NORDHAUS-GADDUM-TYPE THEOREM FOR DIAMETER OF GRAPHS WHEN DECOMPOSING INTO MANY PARTS

被引:5
作者
An, Zhihua [1 ]
Wu, Baoyindureng [1 ]
Li, Daobin [1 ]
Wang, Yun [1 ]
Su, Guifu [2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
关键词
Decomposition; diameter; distance;
D O I
10.1142/S179383091100122X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K-n be the complete graph of order n, and k >= 2 any fixed integer. Assume (G(1), G(2),..., G(k)) is a decomposition of K-n such that Gi is connected for each i = 1, ..., k. We show that for any sufficiently large n, 2k <= Sigma(k)(i=1) diam(G(i)) = (k - 1)(n - 1) + 2, and that the bounds are best possible.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 15 条
[1]  
Arumugam S, 1996, ARS COMBINATORIA, V43, P89
[2]  
Bondy J.A., 2008, GRADUATE TEXTS MATH
[3]  
ERDOS P, 1989, J COMB THEORY B, V47, P73
[4]   Nordhaus-Gaddum-type theorems for decompositions into many parts [J].
Füredi, Z ;
Kostochka, AV ;
Skrekovski, R ;
Stiebitz, M ;
West, DB .
JOURNAL OF GRAPH THEORY, 2005, 50 (04) :273-292
[5]   SOME NORDHAUS-GADDUM-TYPE RESULTS [J].
GODDARD, W ;
HENNING, MA ;
SWART, HC .
JOURNAL OF GRAPH THEORY, 1992, 16 (03) :221-231
[6]   THE DIAMETER OF A GRAPH AND ITS COMPLEMENT [J].
HARARY, F ;
ROBINSON, RW .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (03) :211-212
[7]  
Nordhaus E.A., 1956, AM MATH MONTHLY, V63, P175, DOI DOI 10.2307/2306658
[8]  
Plesnik J., 1978, J GRAPH THEOR, V2, P9
[9]   A map colour theorem for the union of graphs [J].
Stiebitz, M ;
Skrekovkski, R .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) :20-37
[10]  
Straffin Jr P. D., 1986, AM MATH MONTHLY, V93, P76