Sustained Engraftment of Cryopreserved Human Bone Marrow CD34(+) Cells in Young Adult NSG Mice

被引:27
|
作者
Wiekmeijer, Anna-Sophia [1 ]
Pike-Overzet, Karin [1 ]
Brugman, Martijn H. [1 ]
Salvatori, Daniela C. F. [2 ]
Egeler, R. Maarten [3 ,4 ]
Bredius, Robbert G. M. [3 ]
Fibbe, Willem E. [1 ]
Staal, Frank J. T. [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, L-03-035,POB 9600, NL-2300 RC Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Cent Lab Anim Facil, Leiden, Netherlands
[3] Leiden Univ, Med Ctr, Dept Pediat, Leiden, Netherlands
[4] Univ Toronto, Hosp Sick Children, Div Hematol Oncol, Toronto, ON, Canada
来源
BIORESEARCH OPEN ACCESS | 2014年 / 3卷 / 03期
关键词
human bone marrow; stem cells; xenograft model; thymus;
D O I
10.1089/biores.2014.0008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hematopoietic stem cells (HSCs) are defined by their ability to repopulate the bone marrow of myeloablative conditioned and/or (lethally) irradiated recipients. To study the repopulating potential of human HSCs, murine models have been developed that rely on the use of immunodeficient mice that allow engraftment of human cells. The NSG xenograft model has emerged as the current standard for this purpose allowing for engraftment and study of human T cells. Here, we describe adaptations to the original NSG xenograft model that can be readily implemented. These adaptations encompass use of adult mice instead of newborns and a short ex vivo culture. This protocol results in robust and reproducible high levels of lympho-myeloid engraftment. Immunization of recipient mice with relevant antigen resulted in specific antibody formation, showing that both T cells and B cells were functional. In addition, bone marrow cells from primary recipients exhibited repopulating ability following transplantation into secondary recipients. Similar results were obtained with cryopreserved human bone marrow samples, thus circumventing the need for fresh cells and allowing the use of patient derived bio-bank samples. Our findings have implications for use of this model in fundamental stem cell research, immunological studies in vivo and preclinical evaluations for HSC transplantation, expansion, and genetic modification.
引用
收藏
页码:110 / 116
页数:7
相关论文
共 50 条
  • [31] High-resolution cell division tracking demonstrates the Flt3-ligand-dependence of human marrow CD34(+)CD38(-) cell production in vitro
    Nordon, RE
    Ginsberg, SS
    Eaves, CJ
    BRITISH JOURNAL OF HAEMATOLOGY, 1997, 98 (03) : 528 - 539
  • [32] Co-transplantation of human fetal thymus, bone and CD34+ cells into young adult immunodeficient NOD/SCID IL2Rγnull mice optimizes humanized mice that mount adaptive antibody responses
    Chung, Yun Shin
    Son, Jin Kyung
    Choi, Bongkum
    Joo, Sung-Yeon
    Lee, Yong-Soo
    Park, Jae Berm
    Moon, Hana
    Kim, Tae Jin
    Kim, Se Ho
    Hong, Seokmann
    Chang, Jun
    Kang, Myung-Soo
    Kim, Sung Joo
    CLINICAL IMMUNOLOGY, 2015, 157 (02) : 156 - 165
  • [33] Timing and expression level of protein kinase cε regulate the megakaryocytic differentiation of human CD34 cells
    Gobbi, Giuliana
    Mirandola, Prisco
    Sponzilli, Ivonne
    Micheloni, Cristina
    Malinvernoa, Chiara
    Coccob, Lucio
    Vitale, Marco
    STEM CELLS, 2007, 25 (09) : 2322 - 2329
  • [34] Diprotin A infusion into nonobese diabetic/severe combined immunodeficiency mice markedly enhances engraftment of human mobilized CD34+ peripheral blood cells
    Kawai, Toshinao
    Choi, Uimook
    Liu, Po-Ching
    Whiting-Theobald, Narda L.
    Linton, Gilda F.
    Malech, Harry L.
    STEM CELLS AND DEVELOPMENT, 2007, 16 (03) : 361 - 370
  • [35] Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo
    Yin, Ping
    Ono, Masanori
    Moravek, Molly B.
    Coon, John S.
    Navarro, Antonia
    Monsivais, Diana
    Dyson, Matthew T.
    Druschitz, Stacy A.
    Malpani, Saurabh S.
    Serna, Vanida A.
    Qiang, Wenan
    Chakravarti, Debabrata
    Kim, J. Julie
    Bulun, Serdar E.
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2015, 100 (04): : E601 - E606
  • [36] Fate and Effects of Adult Bone Marrow Cells in Lungs of Normoxic and Hyperoxic Newborn Mice
    Fritzell, James A., Jr.
    Mao, Quanfu
    Gundavarapu, Sravanthi
    Pasquariello, Terry
    Aliotta, Jason M.
    Ayala, Alfred
    Padbury, James F.
    De Paepe, Monique E.
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2009, 40 (05) : 575 - 587
  • [37] Circulating CD34+cells of primary myelofibrosis patients contribute to myeloid-dominant hematopoiesis and bone marrow fibrosis in immunodeficient mice
    Saito, Noriyuki
    Yamauchi, Takuji
    Kawano, Noriaki
    Ono, Rintaro
    Yoshida, Shuro
    Miyamoto, Toshihiro
    Kamimura, Tomohiko
    Shultz, Leonard D.
    Saito, Yoriko
    Takenaka, Katsuto
    Shimoda, Kazuya
    Harada, Mine
    Akashi, Koichi
    Ishikawa, Fumihiko
    INTERNATIONAL JOURNAL OF HEMATOLOGY, 2022, 115 (02) : 198 - 207
  • [38] LONG-TERM ENGRAFTMENT AND SAFETY OF HUMAN BONE MARROW DERIVED CD133+CELLS IN A RAT MODEL OF ASHERMAN'S SYNDROME.
    Santamaria, Xavier
    Kumar, Nanda
    Simon, Carlos
    FERTILITY AND STERILITY, 2020, 114 (03) : E438 - E438
  • [39] CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment
    Lee-Sayer, Sally S. M.
    Dougan, Meghan N.
    Cooper, Jesse
    Sanderson, Leslie
    Dosanjh, Manisha
    Maxwell, Christopher A.
    Johnson, Pauline
    PLOS ONE, 2018, 13 (04):
  • [40] Adult human circulating CD34-Lin-CD45-CD133- cells can differentiate into hematopoietic and endothelial cells
    Ciraci, Elisa
    Della Bella, Silvia
    Salvucci, Ombretta
    Rofani, Cristina
    Segarra, Marta
    Bason, Caterina
    Molinari, Agnese
    Maric, Dragan
    Tosato, Giovanna
    Berardi, Anna C.
    BLOOD, 2011, 118 (08) : 2105 - 2115