PROBABILISTIC-INTERPRETATION OF A SYSTEM OF QUASI-LINEAR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS UNDER NEUMANN BOUNDARY-CONDITIONS

被引:23
作者
HU, Y
机构
[1] Institut de Mathématiques et Informatique, Université Claude Bernard - Lyon I, Villeurbanne
关键词
REFLECTING BROWNIAN MOTION; LOCAL TIME; BACKWARD STOCHASTIC DIFFERENTIAL EQUATION; NEUMANN BOUNDARY CONDITION;
D O I
10.1016/0304-4149(93)90109-H
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A probabilistic interpretation of a system of second order quasilinear elliptic partial differential equations under a Neumann boundary condition is obtained by introducing a kind of backward stochastic differential equations in the infinite horizon case. In the same time, a simple proof for the existence and uniqueness result of the classical solution of that Neumann problem is given.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 15 条
[1]  
[Anonymous], 1975, STOCHASTIC DIFFERENT
[2]  
DUFFIE D, 1989, STOCHASTIC DIFFERENT
[3]  
Freidlin M., 1985, FUNCTIONAL INTEGRATI
[4]  
Friedman A, 1975, STOCHASTIC DIFFERENT, VII
[5]   PROBABILISTIC APPROACH TO THE NEUMANN PROBLEM [J].
HSU, P .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (04) :445-472
[6]  
HSU P, 1984, THESIS STANFORD U ST
[7]  
HU Y., 1991, STOCH ANAL APPL, V9, P445, DOI [10.1080/07362999108809250, DOI 10.1080/07362999108809250]
[8]  
Ikeda N., 1981, STOCHASTIC DIFFERENT
[9]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[10]  
Peng S., 1991, STOCHASTICS, V37, P61