FINITENESS OF THE NUMBER OF ENDS OF MINIMAL SUBMANIFOLDS IN EUCLIDEAN-SPACE

被引:4
作者
TKACHEV, VG
机构
[1] Department of Mathematics, Volgograd St. University, Volgograd, 400062
关键词
D O I
10.1007/BF02567704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a version of the well-known Denjoy-Ahlfors theorem about the number of asymptotic values of an entire function for properly immersed minimal surfaces of arbitrary codimension in ℝ N . The finiteness of the number of ends is proved for minimal submanifolds with finite projective volume. We show, as a corollary, that a minimal surface of codimension n meeting any n-plane passing through the origin in at most k points has no more c(n, N)k ends. © 1994 Springer-Verlag.
引用
收藏
页码:313 / 330
页数:18
相关论文
共 8 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[2]   AHLFORS AND CONFORMAL INVARIANTS [J].
BAERNSTEIN, A .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1988, 13 (03) :289-312
[3]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[4]   MINIMAL-SURFACES BASED ON THE CATENOID [J].
HOFFMAN, D ;
MEEKS, WH .
AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (08) :702-730
[5]  
MIKLYUKOV VM, 1987, SOV MATH IZV VUZ, V31, P30
[6]  
OSSERMAN R, 1987, SURVEY MINIMAL SURFA
[7]  
WEITSMAN A, 1987, MICH MATH J, V34, P275
[8]  
WHITE B, 1987, J DIFFER GEOM, V26, P315