SPECTRAL PROPERTIES AND SUM-RULES OF THE ONE-DIMENSIONAL HUBBARD-MODEL

被引:6
|
作者
MOMOI, T
机构
[1] Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113
关键词
D O I
10.1016/0375-9601(94)90041-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study spectral properties of dynamical structure factors of the one-dimensional Hubbard model at T = 0, using sum rules and the Bethe-ansatz solution. Sum rules help us to obtain information about dynamic quantities from static quantities. We estimate the spectral weight on the lowest-excitation frequency in the dynamical structure factors of spin and charge at small momenta. It is found that there exists a strong or broad continuum spectrum at small momentum above the lowest frequency in the dynamical spin-structure factor of the dilute limit and in the dynamical charge-structure factor near half filling. The spectral weight on the lowest frequency is negligible in these two regions. In other regions, most of the spectral weight concentrates near the lowest frequency.
引用
收藏
页码:351 / 357
页数:7
相关论文
共 50 条
  • [1] SPECTRAL PROPERTIES OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    PREUSS, R
    MURAMATSU, A
    VONDERLINDEN, W
    DIETERICH, P
    ASSAAD, FF
    HANKE, W
    PHYSICAL REVIEW LETTERS, 1994, 73 (05) : 732 - 735
  • [2] THERMODYNAMIC PROPERTIES OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    KAWAKAMI, N
    USUKI, T
    OKIJI, A
    PHYSICS LETTERS A, 1989, 137 (06) : 287 - 290
  • [3] THE HUBBARD-MODEL FOR ONE-DIMENSIONAL SOLIDS
    PAINELLI, A
    GIRLANDO, A
    INTERACTING ELECTRONS IN REDUCED DIMENSIONS, 1989, 213 : 165 - 170
  • [4] SUSCEPTIBILITY OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    MILA, F
    PENC, K
    PHYSICAL REVIEW B, 1995, 51 (03): : 1997 - 2000
  • [5] DYNAMIC PROPERTIES OF THE ONE-DIMENSIONAL HUBBARD-MODEL - A NUMERICAL STUDY
    OTSUKA, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (11) : 3754 - 3760
  • [6] CHARGE EXCITATIONS IN THE ONE-DIMENSIONAL HUBBARD-MODEL
    KAWAKAMI, N
    OKIJI, A
    PHYSICAL REVIEW B, 1989, 40 (10): : 7066 - 7072
  • [7] EXACT INTEGRABILITY OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    SHASTRY, BS
    PHYSICAL REVIEW LETTERS, 1986, 56 (23) : 2453 - 2455
  • [8] SOLITONS IN A ONE-DIMENSIONAL DEGENERATE HUBBARD-MODEL
    LIPINSKI, S
    ACTA PHYSICA POLONICA A, 1991, 80 (01) : 117 - 128
  • [9] SOLITONS IN A ONE-DIMENSIONAL MODIFIED HUBBARD-MODEL
    LINDNER, U
    FEDYANIN, VK
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1978, 89 (01): : 123 - 129
  • [10] SPIN CORRELATIONS IN THE ONE-DIMENSIONAL HUBBARD-MODEL
    QUE, WM
    BOWEN, SP
    WILLIAMS, CD
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (30): : L835 - L841