RANDOM GENERATION OF STOCHASTIC AREA INTEGRALS

被引:56
作者
GAINES, JG
LYONS, TJ
机构
[1] Univ of Edinburgh, Edinburgh
关键词
STOCHASTIC DIFFERENTIAL EQUATIONS; RANDOM NUMBER GENERATION; NUMERICAL APPROXIMATIONS;
D O I
10.1137/S0036139992235706
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors describe a method of random generation of the integrals A1,2(t,t+h) = integral-t+h/t integral-s/t dw1(r)dw2(s) - integral-t+h/t integral-s/t dw2(r)dw1(s), together with the increments w1(t+h) - w1(t) and w2(t+h) - w2(t) of a two-dimensional Brownian path (w1(t), w2(t)). The method chosen is based on Marsaglia's ''rectangle-wedge-tail'' method, generalised to higher dimensions. The motivation is the need for a numerical scheme for simulation of strong solutions of general multidimensional stochastic differential equations with an order of convergence O(h), where h is the stepsize. Previously, no method has obtained an order of convergence better than O(square-root h) in the general case.
引用
收藏
页码:1132 / 1146
页数:15
相关论文
共 13 条
[11]  
NEWTON NJ, 1986, STOCHASTICS, V19, P175
[12]   DISCRETIZATION AND SIMULATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
PARDOUX, E ;
TALAY, D .
ACTA APPLICANDAE MATHEMATICAE, 1985, 3 (01) :23-47
[13]  
Talay D., 1990, Stochastics and Stochastics Reports, V29, P13, DOI 10.1080/17442509008833606