ELECTRON-CYCLOTRON EMISSION FROM NONTHERMAL TOKAMAK PLASMAS

被引:21
作者
HARVEY, RW [1 ]
OBRIEN, MR [1 ]
ROZHDESTVENSKY, VV [1 ]
LUCE, TC [1 ]
MCCOY, MG [1 ]
KERBEL, GD [1 ]
机构
[1] CULHAM LAB,ABINGDON OX14 3DB,OXON,ENGLAND
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1993年 / 5卷 / 02期
关键词
D O I
10.1063/1.860530
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron cyclotron emission can be a sensitive indicator of nonthermal electron distributions. A new, comprehensive ray-tracing and cyclotron emission code that is aimed at predicting and interpreting the cyclotron emission from tokamak plasmas is described. The radiation transfer equation is solved along Wentzel-Kramers-Brillouin (WKB) rays using a fully relativistic calculation of the emission and absorption from electron distributions that are gyrotropic and toroidally symmetric, but may be otherwise arbitrary functions of the constants of motion. Using a radial array of electron distributions obtained from a bounce-averaged Fokker-Planck code modeling dc electron field and electron cyclotron heating effects, the cyclotron emission spectra are obtained. A pronounced strong nonthermal cyclotron emission feature that occurs at frequencies relativistically downshifted to second harmonic cyclotron frequencies outside the tokamak is calculated, in agreement with experimental results from the DIII-D [J. L. Luxon and L. G. Davies, Fusion Technol. 8, 441 (1985)] and FT-1 [D. G. Bulyginsky et al., in Proceedings of the 15th European Conference on Controlled Fusion and Plasma Heating, Dubrovnik, 1988 (European Physical Society, Petit-Lancy, 1988), Vol. 12B, Part II, p. 823] tokamaks. The calculations indicate the presence of a strong loss mechanism that operates on electrons in the 100-150 keV energy range.
引用
收藏
页码:446 / 456
页数:11
相关论文
共 46 条
[1]   POWER DEPOSITION PROFILE EFFECT ON THE ECH EFFICIENCY IN T-10 [J].
ALIKAEV, V ;
BAGDASAROV, A ;
BEREZOVSKII, E ;
BERLIZOV, A ;
BORSHCHAGOVSKII, A ;
VASIN, N ;
VERSHKOV, V ;
GORELOV, Y ;
GRASHIN, S ;
DREMIN, M ;
ESIPCHUK, Y ;
EFREMOV, S ;
ZAVERYAEV, V ;
ILIN, V ;
KISLOV, A ;
KARZHAVIN, Y ;
MARKELOV, V ;
MAXIMOV, Y ;
MEDVEDEV, A ;
NOTKIN, G ;
NABATOV, A ;
PIMENOV, A ;
POPOVICHEV, S ;
POPOV, I ;
POZNYAK, V ;
RAZUMOVA, K ;
ROY, I ;
RODICHKIN, I ;
STEPANENKO, M ;
STRELKOV, V ;
SOKOLOV, Y ;
SITAR, E ;
SOLNTSEV, A ;
TARAKANOV, A ;
TARASAN, K ;
TITISHOV, K ;
TRUKHIN, V ;
PHLYAGIN, V ;
CHANKIN, A ;
CHISTYAKOV, V ;
CHICHEROV, V ;
SHISHKIN, B ;
YARAMYSHEV, G .
PLASMA PHYSICS AND CONTROLLED FUSION, 1987, 29 (10A) :1285-1295
[2]  
ALIKAEV VV, 1975, SOV PHYS-TECH PHYS, V20, P321
[3]  
BARNES CW, 1981, THESIS PRINCETON U P
[4]  
Bekefi G., 1966, RAD PROCESSES PLASMA
[5]   LOWER-HYBRID CURRENT DRIVE IN THE PLT TOKAMAK [J].
BERNABEI, S ;
DAUGHNEY, C ;
EFTHIMION, P ;
HOOKE, W ;
HOSEA, J ;
JOBES, F ;
MARTIN, A ;
MAZZUCATO, E ;
MESERVEY, E ;
MOTLEY, R ;
STEVENS, J ;
VONGOELER, S ;
WILSON, R .
PHYSICAL REVIEW LETTERS, 1982, 49 (17) :1255-1258
[6]   THE FULLY RELATIVISTIC DIELECTRIC TENSOR FOR ELECTRON-CYCLOTRON INTERACTION IN A MAXWELLIAN PLASMA [J].
BORNATICI, M ;
RUFFINA, U .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1985, 6 (03) :231-250
[7]   ELECTRON-CYCLOTRON EMISSION AND ABSORPTION IN FUSION PLASMAS [J].
BORNATICI, M ;
CANO, R ;
DEBARBIERI, O ;
ENGELMANN, F .
NUCLEAR FUSION, 1983, 23 (09) :1153-1257
[8]  
BULYGINSKY DG, 1988, 15TH P EUR C CON B 2, V12, P823
[9]  
CASTEJON F, 1988, 15TH P EUR C CON B 2, V12, P862
[10]   MODIFICATION OF LOWER-HYBRID CURRENT RAMP-UP BY RUNAWAYS [J].
CHAN, VS ;
LIU, CS ;
LEE, YC .
PHYSICS OF FLUIDS, 1986, 29 (06) :1900-1907