WEIGHTED NORM INEQUALITIES FOR GENERAL OPERATORS ON MONOTONE-FUNCTIONS

被引:40
作者
LAI, SZ
机构
关键词
WEIGHTED INEQUALITIES; STRONG TYPE INEQUALITY; GENERAL OPERATOR;
D O I
10.2307/2154678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we characterize the weights w, v for which \\S(phi)f\\p,w less-than-or-equal-to C \\f\\q,v, for f nonincreasing, where S(phi)f = integral-infinity/0 phi(x,y)f(y)dy.
引用
收藏
页码:811 / 836
页数:26
相关论文
共 9 条
[1]   MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES AND HARDY INEQUALITY WITH WEIGHTS FOR NONINCREASING FUNCTIONS [J].
ARINO, MA ;
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) :727-735
[2]  
BENNETT C, 1988, MATH, V129
[3]  
BRAVERMAN MS, CLASS OPERATORS
[4]  
HEINIG HP, WEIGHTED INEQUALITIE
[5]   A GENERAL MAXIMAL OPERATOR AND THE AP-CONDITION [J].
LECKBAND, MA ;
NEUGEBAUER, CJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 275 (02) :821-831
[6]  
NEUGEBAUER CJ, IN PRESS FORUM MAT
[7]  
NEUGEBAUER CJ, IN PRESS PUBL MAT
[8]   BOUNDEDNESS OF CLASSICAL OPERATORS ON CLASSICAL LORENTZ SPACES [J].
SAWYER, E .
STUDIA MATHEMATICA, 1990, 96 (02) :145-158
[9]  
STEPANOV D, WEIGHTED HARDYS INEQ