To establish the mode of fertilization in a marsupial, a morphological investigation was made of the gametes of the South American grey short-tailed opossum, Monodelphis domestica, at the time of fertilization in vivo and in vitro. Oestrus was induced in females by the introduction of an unfamiliar male. To obtain oocytes recently fertilized in vivo, females were killed 18-24 hours after the first mating and the region of the oviduct containing eggs excised and fixed. Unfertilized mature oocytes were recovered from ovarian follicles 15-18 hours after first mating and fertilized in vitro with cauda epididymal spermatozoa in a modified MEM medium supplemented with bovine serum albumin at 37-degrees-C in 5% CO2 in air. Following sperm-egg binding and fertilization, oocytes were fixed and prepared for light and electron microscopy. Spermatozoa unpaired prior to fertilization in vivo and in vitro and single spermatozoa bound to the zona surface by their plasmalemma overlying the acrosome on the dorsal face of the sperm head. The acrosome reaction was only observed at the zona surface (suggesting that it may be induced by zona components) and involved a vesiculation of sperm plasma and acrosomal membranes over the main body of the acrosome but not over the narrow, marginal region which persisted after the acrosome reaction was complete. Sperm penetration of the zona pellucida caused a large breach in the zona and the dispersal of perivitelline material. The fusion of the spermatozoon with the oolemma occurred first over the marginal acrosomal region and was accompanied by a fertilization cone which protruded through the zona penetration hole. Activation of the egg was characterized by the release of material from vesicles in the peripheral cytoplasm and extrusion of the second polar body. The mode of fertilization in Monodelphis was compared with what is known in other marsupials (New World and Australian) and eutherian (placental) mammals. It was concluded that the general features of the acrosome reaction and sperm-egg fusion may be essentially similar in both groups and that an evolutionary schism did not occur following the development of the eutherian mode of fertilization. (C) 1993 Wiley-Liss, Inc.