POINTWISE AND UNIFORM-CONVERGENCE WITH PROBABILITY-1 OF NONPARAMETRIC REGRESSION-ESTIMATORS

被引:0
作者
IOFFE, MO
KATKOVNIK, VY
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:1659 / 1667
页数:9
相关论文
共 50 条
[31]   STRONG UNIFORM-CONVERGENCE RATE OF KERNEL ESTIMATE OF THE REGRESSION FROM DEPENDENT OBSERVATIONS [J].
SARDA, P ;
VIEU, P ;
FORTET, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (11) :423-426
[32]   ASYMPTOTIC NORMALITY AND CONSISTENCY OF SEMI-NONPARAMETRIC REGRESSION-ESTIMATORS USING AN UPWARDS F TEST TRUNCATION RULE [J].
EASTWOOD, BJ .
JOURNAL OF ECONOMETRICS, 1991, 48 (1-2) :151-181
[33]   Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency [J].
Linke, Yuliana ;
Borisov, Igor ;
Ruzankin, Pavel ;
Kutsenko, Vladimir ;
Yarovaya, Elena ;
Shalnova, Svetlana .
MATHEMATICS, 2024, 12 (12)
[34]   Nonparametric Regression When Estimating the Probability of Success: A Comparison of Four Extant Estimators [J].
Wilcox, Rand R. .
JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2012, 6 (03) :443-451
[35]   UNIFORM CONVERGENCE OF NEAREST NEIGHBOR REGRESSION FUNCTION ESTIMATORS AND THEIR APPLICATION IN OPTIMIZATION [J].
DEVROYE, LP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (02) :142-151
[36]   ON THE UNIFORM-CONVERGENCE AND L1-CONVERGENCE OF DOUBLE WALSH-FOURIER SERIES [J].
MORICZ, F .
STUDIA MATHEMATICA, 1992, 102 (03) :225-237
[37]   MINIMAX RATES OF CONVERGENCE AND OPTIMALITY OF BAYES FACTOR WAVELET REGRESSION ESTIMATORS UNDER POINTWISE RISKS [J].
Bochkina, Natalia ;
Sapatinas, Theofanis .
STATISTICA SINICA, 2009, 19 (04) :1389-1406
[38]   BOOTSTRAPPING REGRESSION-ESTIMATORS UNDER 1ST-ORDER SERIAL-CORRELATION [J].
VEALL, MR .
ECONOMICS LETTERS, 1986, 21 (01) :41-44
[39]   Uniform limit laws of the logarithm for nonparametric estimators of the regression function in presence of censored data [J].
Maillot B. ;
Viallon V. .
Mathematical Methods of Statistics, 2009, 18 (2) :159-184
[40]   Convergence rates for uniform confidence intervals based on local polynomial regression estimators [J].
De Brabanter, K. ;
Liu, Y. ;
Hua, C. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (01) :31-48