SIGNED STAR (j, k)-DOMATIC NUMBER OF A GRAPH

被引:0
|
作者
Sheikholeslami, S. M. [1 ,2 ]
Volkmann, L. [3 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Azarbaijan Shahid Madani Univ, Res Grp Proc & Commun, Tabriz, Iran
[3] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
来源
关键词
Signed star (j; k)-domatic number; Signed star domatic number; Signed star j-dominating function; Signed star dominating function; Signed star j-domination number; Signed star domination number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph without isolated vertices with edge set E(G), and let j and k be two positive integers. A function f : E(G) -> {-1, 1} is said to be a signed star j-dominating function on G if Sigma(e is an element of E(v)) f (e) >= j for every vertex v of G, where E(v) = {uv is an element of E(G) vertical bar u is an element of N(v)}. A set {f(1), f(2), ..., f(d)} of distinct signed star j-dominating functions on G with the property that Sigma(d)(i=1) f(i)(e) <= k for each e is an element of E(G), is called a signed star (j, k)-dominating family (of functions) on G. The maximum number of functions in a signed star (j, k)-dominating family on G is the signed star (j, k)-domatic number of G denoted by d(SS)((j, k)) (G). In this paper we study properties of the signed star (j, k)-domatic number of a graph G. In particular, we determine bounds on d(SS)((j, k))(G). Some of our results extend those ones given by Atapour, Sheikholeslami, Ghameslou and Volkmann [1] for the signed star domatic number, Sheikholeslami and Volkmann [5] for the signed star (k, k)-domatic number and Sheikholeslami and Volkmann [4] for the signed star k-domatic number.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 50 条
  • [21] Upper bounds on the signed (k, k)-domatic number
    Lutz Volkmann
    Aequationes mathematicae, 2013, 86 : 279 - 287
  • [22] Signed total (k, k)-domatic number of digraphs
    Sheikholeslami, S. M.
    Volkmann, L.
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 87 - 96
  • [23] Signed total (k, k)-domatic number of digraphs
    S. M. Sheikholeslami
    L. Volkmann
    Aequationes mathematicae, 2012, 83 : 87 - 96
  • [24] Upper bounds on the signed (k, k)-domatic number
    Volkmann, Lutz
    AEQUATIONES MATHEMATICAE, 2013, 86 (03) : 279 - 287
  • [25] Signed (j, k)-domatic numbers of graphs
    Sheikholeslami, S. M.
    Volkmann, L.
    ARS COMBINATORIA, 2016, 126 : 73 - 86
  • [26] The total {k}-domatic number of a graph
    S. M. Sheikholeslami
    L. Volkmann
    Journal of Combinatorial Optimization, 2012, 23 : 252 - 260
  • [27] The k-domatic number of a graph
    Kämmerling K.
    Volkmann L.
    Czechoslovak Mathematical Journal, 2009, 59 (2) : 539 - 550
  • [28] Upper Bounds on the Signed (k, k)-Domatic Number of Digraphs
    Volkmann, Lutz
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (04) : 1527 - 1536
  • [29] The Roman (k, k)-domatic number of a graph
    Kazemi, A. P.
    Sheikholeslami, S. M.
    Volkmann, L.
    ANNALES MATHEMATICAE ET INFORMATICAE, 2011, 38 : 45 - 57
  • [30] THE k-DOMATIC NUMBER OF A GRAPH
    Kaemmerling, Karsten
    Volkmann, Lutz
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (02) : 539 - 550