An approximate solution to a moving boundary problem with space-time fractional derivative in fluvio-deltaic sedimentation process

被引:10
作者
Rajeev [1 ]
Kushwaha, Mohan Singh [1 ]
Kumar, Ajay [1 ]
机构
[1] Banaras Hindu Univ, Indian Inst Technol, Dept Appl Math, Varanasi 221005, Uttar Pradesh, India
关键词
Adomian decomposition method; Moving boundary problem; Sediment transport; Shoreline problem; Fractional derivatives;
D O I
10.1016/j.asej.2012.12.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A mathematical model of the movement of the shoreline in a sedimentary ocean basin is discussed. The model includes space-time fractional derivative in Caputo sense and variable latent heat term. An approximate solution of the problem is obtained by Adomian decomposition method and the results thus obtained are compared graphically with an exact solution of integer order (beta = 1, alpha = 1). Three particular cases, the standard diffusion, the time-fractional and the space-fractional diffusions are also discussed. The model and solution are generalization of previous works. (C) 2013 Ain Shams University. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:889 / 895
页数:7
相关论文
共 39 条
[21]   The physical basis for anomalous diffusion in bed load transport [J].
Martin, Raleigh L. ;
Jerolmack, Douglas J. ;
Schumer, Rina .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2012, 117
[22]   Limit theorems for continuous-time random walks with infinite mean waiting times [J].
Meerschaert, MM ;
Scheffler, HP .
JOURNAL OF APPLIED PROBABILITY, 2004, 41 (03) :623-638
[23]  
Podlubny I., 1999, FRACTIONAL DIFFERENT
[24]   Numerical solution of a moving-boundary problem with variable latent heat [J].
Rai, Rajeev K. N. ;
Das, S. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (7-8) :1913-1917
[25]  
Rajeev, 2012, THERMAL SCI
[26]  
Rajeev Kushwaha MS, 2012, APPL MATH MODEL
[27]   Fractal mobile/immobile solute transport [J].
Schumer, R ;
Benson, DA ;
Meerschaert, MM ;
Baeumer, B .
WATER RESOURCES RESEARCH, 2003, 39 (10) :SBH131-SBH1312
[28]   Fractional advection-dispersion equations for modeling transport at the Earth surface [J].
Schumer, Rina ;
Meerschaert, Mark M. ;
Baeumer, Boris .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2009, 114
[29]   Fluvio-deltaic sedimentation: A generalized Stefan problem [J].
Swenson, JB ;
Voller, VR ;
Paola, C ;
Parker, G ;
Marr, JG .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :433-452
[30]   Generalized space-time fractional diffusion equation with composite fractional time derivative [J].
Tomovski, Zivorad ;
Sandev, Trifce ;
Metzler, Ralf ;
Dubbeldam, Johan .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (08) :2527-2542