DETECTING INTERACTIONS USING LOW-DIMENSIONAL SEARCHES IN HIGH-DIMENSIONAL DATA

被引:2
作者
SPIEGELMAN, CH [1 ]
WANG, CY [1 ]
机构
[1] FRED HUTCHINSON CANC RES CTR,DIV PUBL HLTH SCI,SEATTLE,WA 98104
基金
美国国家科学基金会;
关键词
D O I
10.1016/0169-7439(94)00009-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One important issue in chemometrics is to detect interactions among several factors. In this paper, we propose methods that detect interactions using low dimensional smoothers. Two methods are investigated and compared with usual least squared methods via Monte Carlo simulations. In addition, we show, using real data, how the methods affect our decisions.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 11 条