HOMOMORPHISMS FROM THE GROUP OF RATIONAL-POINTS ON ELLIPTIC-CURVES TO CLASS-GROUPS OF QUADRATIC NUMBER-FIELDS

被引:11
作者
SOLENG, R [1 ]
机构
[1] UNIV TROMSO,INST MATH & PHYS SCI,N-9000 TROMSO,NORWAY
关键词
D O I
10.1006/jnth.1994.1013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to prove that there is a homomorphism from the group of primitive points on an elliptic curve given by an equation Y2 = X3 + a2X2 + a4X + a6 to the ideal class group of the order Z + Z square-root a6. Two applications are given. First we prove a conjecture concerning the order of ideals coming from rational points of infinite order on the curve. Then we describe how to construct families of quadratic number fields containing a subgroup of the ideal class group isomorphic to the torsion group of the curve. (C) 1994 Academic Press, Inc.
引用
收藏
页码:214 / 229
页数:16
相关论文
共 15 条
  • [1] Ankeny N. C., 1955, PAC J MATH, V5, P321
  • [2] Cassels J.W.S., 1978, RATIONAL QUADRATIC F
  • [3] Cox DA., 1989, PRIMES FORM X2 NY2
  • [4] CRAIG M, 1973, ACTA ARITH, V22
  • [5] UNITS OF CERTAIN SUB-RINGS OF ALGEBRAIC FUNCTION-FIELDS
    HELLEGOUARCH, Y
    MCQUILLAN, DL
    PAYSANTLEROUX, R
    [J]. ACTA ARITHMETICA, 1987, 48 (01) : 9 - 47
  • [6] HELLEGOUARCH Y, LECTURE NOTES MATH, V1380
  • [7] Hooley C, 1976, APPL SIEVE METHODS, P15
  • [8] HUMBERT P, 1939, COMMENT MATH HELV, V12, P223
  • [9] HUMBERT P, 1940, COMMENT MATH HELV, V13, P67
  • [10] ON CLASS NUMBER OF IMAGINARY QUADRATIC NUMBER FIELDS
    KURODA, SN
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1964, 40 (06): : 365 - &