STRICT STATIONARITY OF GENERALIZED AUTOREGRESSIVE PROCESSES

被引:279
作者
BOUGEROL, P [1 ]
PICARD, N [1 ]
机构
[1] UNIV NANCY 1, DEPT MATH, F-54506 VANDOEUVRE LES NANCY, FRANCE
关键词
AUTOREGRESSIVE MODEL; LINEAR STOCHASTIC SYSTEM; ARMA PROCESS; STRICT STATIONARITY; STATE SPACE SYSTEM; LYAPOUNOV EXPONENT; STOCHASTIC DIFFERENCE EQUATION;
D O I
10.1214/aop/1176989526
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the multivariate equation X(n+1) = A(n+1)X(n) + B(n+1) with i.i.d. coefficients which have only a logarithmic moment. We give a necessary and sufficient condition for existence of a strictly stationary solution independent of the future. As an application we characterize the multivariate ARMA equations with general noise which have such a solution.
引用
收藏
页码:1714 / 1730
页数:17
相关论文
共 26 条
[2]   STATIONARITY OF GARCH PROCESSES AND OF SOME NONNEGATIVE TIME-SERIES [J].
BOUGEROL, P ;
PICARD, N .
JOURNAL OF ECONOMETRICS, 1992, 52 (1-2) :115-127
[3]  
BOUGEROL P, 1985, PROGR PROBABILITY ST
[4]   THE STOCHASTIC EQUATION YN+1=ANYN+BN WITH STATIONARY COEFFICIENTS [J].
BRANDT, A .
ADVANCES IN APPLIED PROBABILITY, 1986, 18 (01) :211-220
[5]  
Caines P. E., 1988, LINEAR STOCHASTIC SY
[6]   LINEAR PREDICTION OF ARMA PROCESSES WITH INFINITE VARIANCE [J].
CLINE, DBH ;
BROCKWELL, PJ .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (02) :281-296
[7]  
ELIE L, 1982, ANN SCI ECOLE NORM S, V15, P257
[8]  
Feigin P.D., 1985, J TIME SER ANAL, V6, DOI [10.1111/j.1467-9892.1985.tb00394.x, DOI 10.1111/j.1467-9892.1985.tb00394.x]
[9]   PRODUCTS OF RANDOM MATRICES [J].
FURSTENBERG, H ;
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02) :457-469
[10]  
GFRANGER WJ, 1978, INTRO BILINEAR TIME