LEFSCHETZ AND NIELSEN COINCIDENCE NUMBERS ON NILMANIFOLDS AND SOLVMANIFOLDS

被引:10
|
作者
MCCORD, CK [1 ]
机构
[1] UNIV CINCINNATI,DEPT MATH SCI,CINCINNATI,OH 45221
关键词
NIELSEN NUMBER; LEFSCHETZ NUMBER; COINCIDENCES; SOLVMANIFOLD; NILMANIFOLD;
D O I
10.1016/0166-8641(92)90160-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose M1, M2 are compact, connected orientable manifolds of the same dimension. Then for all pairs of maps f, g:M1 --> M2, the Nielsen coincidence number N(f, g) and the Lefschetz coincidence number L(f, g) are measures of the number of coincidences of f and g: points x is-an-element-of M1 with f(x) = g(x). A manifold is a nilmanifold (solvmanifold) if it is a homogeneous space of a nilpotent (solvable) Lie group. If M1 and M2 are compact connected orientable solvmanifolds, then N(f, g) greater-than-or-equal-to \L(f, g)\ for all f and g, with equality for all f and g if M2 is a nilmanifold.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条