A functional integral method is used to determine equal time commutators between the covariant currents and the covariant Gauss-law operators in theories which are affected by an anomaly. By using a differential geometrical setup we show how the derivation of consistent- and covariant Schwinger terms can be understood on an equal footing. We find a modified consistency condition for the covariant anomaly. As a by-product the Bardeen-Zumino functional, which relates consistent and covariant anomalies, can be interpreted as connection on a certain line bundle over the space of all gauge potentials. Finally the covariant commutator anomalies are calculated for the two- and four dimensional case.