EMERGENCE OF EFFECTIVE LOW-DIMENSIONAL DYNAMICS IN THE MACROSCOPIC BEHAVIOR OF COUPLED MAP LATTICES

被引:69
作者
CHATE, H
MANNEVILLE, P
机构
来源
EUROPHYSICS LETTERS | 1992年 / 17卷 / 04期
关键词
THEORY AND MODELS OF CHAOTIC SYSTEMS;
D O I
10.1209/0295-5075/17/4/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bifurcation of democratically coupled logistic maps in various space dimensions are studied beyond the accumulation point of the direct cascade of the individual maps. In dimensions d = 2 and 3, only subharmonic bifurcations between periodic collective states are observed upon increasing the control parameter. The case d = 4 displays more complicated sequences with subcritical bifurcations and attractor coexistence. In dimension five or more, even more nontrivial behaviours become possible. An example of quasi-periodic collective motion is given for d = 5. The general implications of these preliminary results are discussed.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 14 条
[1]  
BARRAL B, UNPUB PHYS LETT A
[2]   STABILITY OF TEMPORALLY PERIODIC STATES OF CLASSICAL MANY-BODY SYSTEMS [J].
BENNETT, CH ;
GRINSTEIN, G ;
YU, H ;
JAYAPRAKASH, C ;
MUKAMEL, D .
PHYSICAL REVIEW A, 1990, 41 (04) :1932-1935
[3]   COHERENCE, CHAOS, AND BROKEN SYMMETRY IN CLASSICAL, MANY-BODY DYNAMIC-SYSTEMS [J].
BOHR, T ;
GRINSTEIN, G ;
HE, Y ;
JAYAPRAKASH, C .
PHYSICAL REVIEW LETTERS, 1987, 58 (21) :2155-2158
[4]   EVIDENCE OF COLLECTIVE BEHAVIOR IN CELLULAR AUTOMATA [J].
CHATE, H ;
MANNEVILLE, P .
EUROPHYSICS LETTERS, 1991, 14 (05) :409-413
[5]  
CHATE H, UNPUB COLLECTIVE BEH
[6]  
CRUTCHFIELD JP, 1987, DIRECTIONS CHAOS, V1
[7]  
GALLAS JAC, 1991, NOISY COLLECTIVE BEH
[8]  
GRINSTEIN G, 1988, J STAT PHYS, V5, P803
[9]  
Gutowitz H, 1991, CELLULAR AUTOMATA TH
[10]  
KAMP Y, 1990, RECURSIVE NEURAL NET