ON BETTER HEURISTICS FOR STEINER MINIMUM TREES

被引:6
作者
DU, DZ
ZHANG, YJ
机构
[1] CHINESE ACAD SCI,INST APPL MATH,BEIJING,PEOPLES R CHINA
[2] SO METHODIST UNIV,DEPT COMP SCI,DALLAS,TX 75275
关键词
STEINER TREES; APPROXIMATION PERFORMANCE RATIO;
D O I
10.1007/BF01581080
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Finding a shortest network interconnecting a given set of points in a metric space is called the Steiner minimum tree problem. The Steiner ratio is the largest lower bound for the ratio between lengths of a Steiner minimum tree and a minimum spanning tree for the same set of points. In this paper, we show that in a metric space, if the Steiner ratio is less than one and finding a Steiner minimum tree for a set of size bounded by a fixed number can be performed in polynomial time, then there exists a polynomial-time heuristic for the Steiner minimum tree problem with performance ratio bigger than the Steiner ratio. It follows that in the Euclidean plane, there exists a polynomial-time heuristic for Steiner minimum trees with performance ratio bigger than 1/2 square-root 3. This solves a long-standing open problem.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 17 条
[1]  
BERMAN P, APPROXIMATION ALGORI
[2]  
BERN MW, 1986, 18TH P ANN ACM S THE, P433
[3]   A NEW BOUND FOR EUCLIDEAN STEINER MINIMAL-TREES [J].
CHUNG, FRK ;
GRAHAM, RL .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1985, 440 :328-346
[4]   LOWER BOUND FOR STEINER TREE PROBLEM [J].
CHUNG, FRK ;
HWANG, FK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (01) :27-36
[5]   A NEW BOUND FOR THE STEINER RATIO [J].
DU, DZ ;
HWANG, FK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 278 (01) :137-148
[6]  
DU DZ, 1990, 31ST P ANN S F COMP, P76
[7]  
Foulds L.R., 1982, ADV APPL MATH, V3, P43, DOI DOI 10.1016/S0196-8858(82)80004-3
[8]   COMPLEXITY OF COMPUTING STEINER MINIMAL TREES [J].
GAREY, MR ;
GRAHAM, RL ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :835-859
[9]   RECTILINEAR STEINER TREE PROBLEM IS NP-COMPLETE [J].
GAREY, MR ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :826-834
[10]   STEINER MINIMAL TREES [J].
GILBERT, EN ;
POLLAK, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :1-&