ERGODIC-THEOREMS FOR RANDOM COMPACT-SETS AND FUZZY VARIABLES IN BANACH-SPACES

被引:14
作者
BAN, J
机构
[1] Department of Probability and Statistics, Comenius University, 842 15 Bratislava, Mlynská dolina
关键词
PROBABILITY THEORY AND STATISTICS; ERGODIC THEOREM; FUZZY-VALUED RANDOM VARIABLE; RANDOM SET;
D O I
10.1016/0165-0114(91)90034-N
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The individual ergodic theorem is proved in two cases; first for compact set-valued random variable in a Banach space X of type p, p > 1; second for a random variable having values in the family of all fuzzy subsets of X. The set representation of fuzzy subsets is used. Three types of convergence of fuzzy random variables are considered.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 22 条
[11]  
HESS C, 1979, CR ACAD SCI A MATH, V288, P519
[12]   RADON-NIKODYM THEOREMS FOR SET-VALUED MEASURES [J].
HIAI, F .
JOURNAL OF MULTIVARIATE ANALYSIS, 1978, 8 (01) :96-118
[13]   INTEGRALS, CONDITIONAL EXPECTATIONS, AND MARTINGALES OF MULTIVALUED FUNCTIONS [J].
HIAI, F ;
UMEGAKI, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (01) :149-182
[14]   THE STRONG LAW OF LARGE NUMBERS FOR FUZZY RANDOM-VARIABLES [J].
KRUSE, R .
INFORMATION SCIENCES, 1982, 28 (03) :233-241
[15]  
MIYAKOSHI M, 1984, FUZZY SETS SYSTEMS, V13, P258
[16]  
NATHER O, 1987, ACTA MATH U COMENIAN, V6, P156
[17]  
NEGOITA CV, 1975, APPLICATIONS FUZZY S
[18]  
Parthasarathy, 1975, FUND MATH, V87, P53
[19]   STRONG LAW OF LARGE NUMBERS FOR BANACH-SPACE VALUED RANDOM SETS [J].
PURI, ML ;
RALESCU, DA .
ANNALS OF PROBABILITY, 1983, 11 (01) :222-224
[20]   FUZZY RANDOM-VARIABLES [J].
PURI, ML ;
RALESCU, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (02) :409-422