LP AND MEAN-VALUE PROPERTIES OF SUBHARMONIC FUNCTIONS ON RIEMANNIAN-MANIFOLDS

被引:187
作者
LI, P [1 ]
SCHOEN, R [1 ]
机构
[1] UNIV CALIF BERKELEY,BERKELEY,CA 94720
关键词
D O I
10.1007/BF02392380
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:279 / 301
页数:23
相关论文
共 15 条
[1]  
ANDERSON M, UNPUB J DIFFERENTIAL
[2]  
Anderson M., PREPRINT
[3]  
CHEEGER J, 1982, J DIFFER GEOM, V17, P15
[4]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[5]  
CHUNG LO, UNPUB EXISTENCE HARM
[6]  
GARNETT L, FOLIATIONS ERGODIC T
[7]   INTEGRALS OF SUBHARMONIC FUNCTIONS ON MANIFOLDS OF NONNEGATIVE CURVATURE [J].
GREENE, RE ;
WU, H .
INVENTIONES MATHEMATICAE, 1974, 27 (04) :265-298
[8]  
Li P., 1980, P PURE MATH, VXXXVI, P205
[9]  
Li P, HEAT EQUATION COMPLE
[10]   ANALYSIS OF THE LAPLACIAN ON THE COMPLETE RIEMANNIAN MANIFOLD [J].
STRICHARTZ, RS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 52 (01) :48-79