ON THE GLOBAL CONVERGENCE OF PATH-FOLLOWING METHODS TO DETERMINE ALL SOLUTIONS TO A SYSTEM OF NONLINEAR EQUATIONS

被引:24
作者
DIENER, I
机构
关键词
D O I
10.1007/BF02592951
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:181 / 188
页数:8
相关论文
共 12 条
[1]  
BRANIN FK, 1972, IBM J RES DEV, P504
[2]  
DIENER I, IN PRESS J APPROXIMA
[3]  
Garcia C. B., 1979, Mathematics of Operations Research, V4, P1, DOI 10.1287/moor.4.1.1
[4]  
Garcia C. B., 1978, Mathematics of Operations Research, V3, P282, DOI 10.1287/moor.3.4.282
[5]   FINDING ALL SOLUTIONS TO POLYNOMIAL SYSTEMS AND OTHER SYSTEMS OF EQUATIONS [J].
GARCIA, CB ;
ZANGWILL, WI .
MATHEMATICAL PROGRAMMING, 1979, 16 (02) :159-176
[6]   RELATIONS BETWEEN SEVERAL PATH FOLLOWING ALGORITHMS AND LOCAL AND GLOBAL NEWTON METHODS [J].
GARCIA, CB ;
GOULD, FJ .
SIAM REVIEW, 1980, 22 (03) :263-274
[7]  
GOMULKA J, 1975, GLOBAL OPTIMIZATION, P96
[8]  
HARDY JW, 1975, GLOBAL OPTMISATION, P140
[9]   ALGORITHMS FOR SOLVING F(X)=0 [J].
HIRSCH, MW ;
SMALE, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (03) :281-312
[10]  
JONGEN HT, 1979, METHODS OPERATIONS R, V31, P345