ON PRACTICAL STABILITY OF TIME SCALE PERTURBED SYSTEMS

被引:1
作者
Ben Nasser, Bacem [1 ]
Hammami, Mohamed Ali [1 ]
机构
[1] Fac Sci Sfaxm, Dept Math, Rd Soukra,BP 1171, Sfax 3000, Tunisia
关键词
Time scales; Practical stability; Uniform exponential stability; Perturbed systems; Quadratic stability;
D O I
10.1080/1726037X.2014.922252
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work addresses the problem of uniform practical exponential stability for nonlinear perturbed systems on time scales. Based on Lyapunov techniques and LMI's approach, new sufficient conditions are derived, to find the positive definite function which the derivative is negative definite and provides the uniform practical asymptotic aspect for the system. We present numerical examples to illustrate the proposed result.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 12 条
[1]  
Agarwal R. P, 2000, MONOGRAPHS TXB PURE, V2
[2]  
Aulbach B., 1990, NONLINEAR DYNAMICS Q, P9, DOI DOI 10.1515/9783112581445-002
[3]   A new Lyapunov function for stability of time-varying nonlinear perturbed systems [J].
BenAbdallah, Abdallah ;
Dlala, Mohsen ;
Hammami, Mohamed Ali .
SYSTEMS & CONTROL LETTERS, 2007, 56 (03) :179-187
[4]  
Bohner M, 2003, DYN SYST APPL, V12, P45
[5]  
Bohner M., 2001, DYNAMIC EQUATIONS TI, DOI 10.1007/978-1-4612-0201-1
[6]  
Bohner M., 2005, FAR E J APPL MATH, V18, P289
[7]  
Bohner M., 2003, ADV DYNAMIC EQUATION
[8]   Stability for time varying linear dynamic systems on time scales [J].
DaCunha, JJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (02) :381-410
[9]  
Hu Gang, 2003, Journal of Tongji University (Natural Science), V31, P481
[10]   THE GENERAL PROBLEM OF THE STABILITY OF MOTION [J].
LYAPUNOV, AM .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (03) :531-773