A NEW ESTIMATE FOR THE GINZBURG-LANDAU APPROXIMATION ON THE REAL AXIS

被引:46
作者
SCHNEIDER, G
机构
[1] Institut für Angewandte Mathematik, Universität Hannover, Hannover 1, D-30167
关键词
MODULATION EQUATIONS; GINZBURG-LANDAU APPROXIMATION; NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ON UNBOUNDED DOMAINS;
D O I
10.1007/BF02430625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Modulation equations play an essential role in the understanding of complicated systems near the threshold of instability. For scalar parabolic equations for which instability occurs at nonzero wavelength, we show that the associated Ginzburg-Landau equation dominates the dynamics of the nonlinear problem locally, at least over a long timescale. We develop a method which is simpler than previous ones and allows initial conditions of lower regularity. It involves a careful handling of the critical modes in the Fourier-transformed problem and an estimate of Gronwall's type. As an example, we treat the Kuramoto-Shivashinsky equation. Moreover, the method enables us to handle vector-valued problems [see G. Schneider (1992)].
引用
收藏
页码:23 / 34
页数:12
相关论文
共 8 条
[1]   THE TIME-DEPENDENT AMPLITUDE EQUATION FOR THE SWIFT-HOHENBERG PROBLEM [J].
COLLET, P ;
ECKMANN, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :139-153
[2]  
ECKHAUS W, 1992, 746 U UTRECHT PREPR
[3]   THE VALIDITY OF MODULATION EQUATIONS FOR EXTENDED SYSTEMS WITH CUBIC NONLINEARITIES [J].
KIRRMANN, P ;
SCHNEIDER, G ;
MIELKE, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 122 :85-91
[4]   FINITE BANDWIDTH, FINITE AMPLITUDE CONVECTION [J].
NEWELL, AC ;
WHITEHEAD, JA .
JOURNAL OF FLUID MECHANICS, 1969, 38 :279-+
[5]  
SCHNEIDER G, 1992, THESIS U STUTTGART
[6]  
van Harten A., 1991, J NONLINEAR SCI, V1, P397
[7]  
VANHARTEN A, 1992, SEMINAR NONLINEAR PD
[8]  
Wloka J, 1982, PARTIELLE DIFFERENTI