CONVERGENCE OF LAGRANGE-HERMITE INTERPOLATION

被引:0
作者
Bahadur, Swarnima [1 ]
Shukla, Manisha [1 ]
机构
[1] Univ Lucknow, Dept Math & Astron, Lucknow 226007, Uttar Pradesh, India
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2014年 / 33期
关键词
Jacobi polynomial; Lagrange interpolation; Hermite interpolation; explicit representation; convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider explicit representations and convergence of Lagrange Hermite Interpolation on two disjoint set of nodes, which are obtained by projecting vertically the zeros of (1 - x(2)) P-n((alpha,beta)) (x) and (1 - x(2)) P-n((alpha,beta)') (x) respectively on the unit circle, where P-n((alpha,beta))(x) stands for Jacobi polynomials.
引用
收藏
页码:255 / 262
页数:8
相关论文
共 14 条
[1]  
AKHALAGHI MR, 1990, APPROX OPTIM COMPUT, P37
[2]  
Bahadur S., 2011, INT J MATH ANAL, V5, P1429
[3]  
BAHADUR S., J ADV MATH IN PRESS
[4]  
BAHADUR S., 2011, ADV THEOR APPL MATH, V6, P35
[5]  
BAHADUR S., 2014, AD INQEUAL APPL, V13
[6]   Pal-type interpolation on nonuniformly distributed nodes on the unit circle [J].
Dikshit, HP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) :253-261
[7]  
Kis O., 1960, ACTA MATH ACAD SCI H, V11, P49
[8]  
MATHUR P., 2006, ANAL THEORY APPL, V22, P105
[9]  
Pal L. G., 1996, ANN U BUDAPEST SECTS, V16, P291
[10]  
PAL L.G., 1975, ANAL MATH, P197