PERCOLATION THEORY

被引:19
作者
WIERMAN, JC [1 ]
机构
[1] UNIV MINNESOTA,MINNEAPOLIS,MN 55455
关键词
D O I
10.1214/aop/1176993764
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:509 / 524
页数:16
相关论文
共 38 条
[1]  
[Anonymous], PHASE TRANSITIONS CR
[2]  
Broadbent S. R., 1957, P CAMBRIDGE PHIL SOC, V53, P629, DOI [DOI 10.1017/S0305004100032680, 10.1017/S030500410003 2680]
[3]   SOME LIMIT-THEOREMS FOR PERCOLATION PROCESSES WITH NECESSARY AND SUFFICIENT CONDITIONS [J].
COX, JT ;
DURRETT, R .
ANNALS OF PROBABILITY, 1981, 9 (04) :583-603
[5]   ON THE CONTINUITY OF THE TIME CONSTANT OF 1ST-PASSAGE PERCOLATION [J].
COX, JT ;
KESTEN, H .
JOURNAL OF APPLIED PROBABILITY, 1981, 18 (04) :809-819
[6]   CRITICAL PROBABILITIES FOR CLUSTER SIZE AND PERCOLATION PROBLEMS [J].
FISHER, ME .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (04) :620-&
[7]   CORRELATION INEQUALITIES ON SOME PARTIALLY ORDERED SETS [J].
FORTUIN, CM ;
KASTELEY.PW ;
GINIBRE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (02) :89-&
[8]   MONTE CARLO ESTIMATES OF PERCOLATION PROBABILITIES FOR VARIOUS LATTICES [J].
FRISCH, HL ;
HAMMERSLEY, JM ;
WELSH, DJA .
PHYSICAL REVIEW, 1962, 126 (03) :949-&
[9]  
GRIMMETT GR, 1976, J LOND MATH SOC, V13, P346
[10]  
Hammersley J. M., 1957, P CAMBRIDGE PHILOS S, V53, P642