CASORATI DETERMINANT SOLUTIONS FOR THE DISCRETE PAINLEVE-II EQUATION

被引:33
作者
KAJIWARA, K
OHTA, Y
SATSUMA, J
GRAMMATICOS, B
RAMANI, A
机构
[1] KYOTO UNIV,MATH SCI RES INST,KYOTO 606,JAPAN
[2] UNIV TOKYO,DEPT MATH SCI,MEGURO KU,TOKYO 153,JAPAN
[3] UNIV PARIS 07,LPN,F-75251 PARIS 05,FRANCE
[4] CNRS,ECOLE POLYTECH,CPT,F-91128 PALAISEAU,FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 03期
关键词
D O I
10.1088/0305-4470/27/3/030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a class of solutions to the discrete Painleve-II equation for particular values of its parameters. It is shown that these solutions can be expressed in terms of Casorati determinants whose entries are discrete Airy functions. The analogy between the tau function for the discrete P(II) and that of the discrete Toda molecule equation is pointed out.
引用
收藏
页码:915 / 922
页数:8
相关论文
共 20 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[3]   DO INTEGRABLE MAPPINGS HAVE THE PAINLEVE PROPERTY [J].
GRAMMATICOS, B ;
RAMANI, A ;
PAPAGEORGIOU, V .
PHYSICAL REVIEW LETTERS, 1991, 67 (14) :1825-1828
[4]  
GRAMMATICOS B, 1993, UNPUB PHYS LETT A
[5]  
GROMAK VA, 1990, ANAL SOLUTIONS PAINL
[6]   DISCRETE TWO-DIMENSIONAL TODA MOLECULE EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (12) :4285-4288
[7]  
Ince E. L., 1956, ORDINARY DIFFERENTIA
[8]  
ITS AR, 1990, USP MAT NAUK, V45, P135
[9]  
LEVI D, 1992, NATO ASI SERIES B
[10]   BILINEAR STRUCTURES OF THE PAINLEVE-II EQUATION AND ITS SOLUTIONS FOR HALF INTEGER CONSTANTS [J].
NAKAMURA, A .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (08) :3007-3008