SYSTEM-IDENTIFICATION AND CONTROL USING GENETIC ALGORITHMS

被引:328
作者
KRISTINSSON, K
DUMONT, GA
机构
[1] Electrical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS | 1992年 / 22卷 / 05期
关键词
D O I
10.1109/21.179842
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
It is shown how genetic algorithms can be applied for system identification of both continuous and discrete tim systems. It is shown that they are effective in both domain and are able to directly identify physical parameters or pole and zeros. This can be useful because changing one physic parameter might effect every parameter of a system transfer function. The poles and zeros estimates are then used to design a discrete time pole placement adaptive controller. Simulation for minimum and nonminimum phase systems and a system wit unmodeled dynamics are presented.
引用
收藏
页码:1033 / 1046
页数:14
相关论文
共 31 条
[1]   ADAPTIVE FORGETTING IN RECURSIVE-IDENTIFICATION THROUGH MULTIPLE MODELS [J].
ANDERSSON, P .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 42 (05) :1175-1193
[2]   A GENETIC ALGORITHMIC FRAMEWORK FOR PROCESS DESIGN AND OPTIMIZATION [J].
ANDROULAKIS, IP ;
VENKATASUBRAMANIAN, V .
COMPUTERS & CHEMICAL ENGINEERING, 1991, 15 (04) :217-228
[3]  
Astrom K.J., 2011, COMPUTER CONTROLLED
[4]  
Baker J. E., 1985, P INT C GENETIC ALGO, P101
[5]  
BETHKE AD, 1980, THESIS U MICH ANN AR
[6]  
Burks A. W., 1970, ESSAYS CELLULAR AUTO, P297
[7]  
CANUDAS C, 1987, IEEE J ROBOTIC AUTOM, V3, P680
[8]   SELF-TUNING CONTROL OF NONMINIMUM-PHASE SYSTEMS [J].
CLARKE, DW .
AUTOMATICA, 1984, 20 (05) :501-517
[9]  
DAS R, 1988, 19TH P ANN PITTSB C
[10]  
Davis L, 1987, GENETIC ALGORITHMS S