A Statistical Background Modeling Algorithm for Real-Time Pixel Classification

被引:0
作者
Acevedo-Avila, Ricardo [1 ]
Gonzalez-Mendoza, Miguel [1 ]
Garcia-Garcia, Andres [1 ]
机构
[1] Tecnol Monterrey, Dept Postgrad Studies, Campus Estado Mexico, Cd Lopez Mateos, Mex, Mexico
来源
COMPUTACION Y SISTEMAS | 2018年 / 22卷 / 03期
关键词
Background modeling; embedded computer vision; statistical pixel modeling; image processing; object detection;
D O I
10.13053/CyS-22-3-2554
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a statistical background pixel classifier intended for real-time and low-resource implementation. The algorithm works within a smart video surveillance application aimed to detect unattended objects in images with fixed backgrounds. The algorithm receives an input image and builds an initial background model based on image statistics. Using this information, the algorithm identifies new objects that do not belong to the original image. The algorithm categorizes image pixels in four possible classes: shadows, midtones, highlights and foreground pixels. The classification stage produces a binary mask where only objects of interest are shown. The pixel classifier processes Quarter VGA (320 x 240) gray-scale images at a nomial processing rate of 30 frames per second. Higher resolutions such as VGA (640 x 480) have been also tested. We compare results with traditional statistical background modeling methods. Our experiments demonstrate that our approach achieves successful background segmentation at a minimal resource consumption while maintaining real time execution.
引用
收藏
页码:917 / 927
页数:11
相关论文
共 26 条
  • [1] Acevedo R., 2013, SMART SURVEILLANCE V
  • [2] A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors
    Acevedo-Avila, Ricardo
    Gonzalez-Mendoza, Miguel
    Garcia-Garcia, Andres
    [J]. SENSORS, 2016, 16 (06)
  • [3] Appiah K., 2005, SINGLE CHIP FPGA IMP, P5, DOI [10.1109/FPT.2005, DOI 10.1109/FPT.2005]
  • [4] Bouwmans Thierry, 2009, Recent Patents on Computer Science, V2, P223, DOI 10.2174/1874479610902030223
  • [5] Robust techniques for background subtraction in urban traffic video
    Cheung, SCS
    Kamath, C
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2004, PTS 1 AND 2, 2004, 5308 : 881 - 892
  • [6] De Jesus M., 2012, ROBUST BACKGROUND SU
  • [7] El Baf Fida, 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), P60, DOI 10.1109/CVPR.2009.5204109
  • [8] El Baf F, 2008, LECT NOTES COMPUT SC, V5358, P772, DOI 10.1007/978-3-540-89639-5_74
  • [9] Robust Segmentation of Moving Vehicles Under Complex Outdoor Conditions
    Gangodkar, Durgaprasad
    Kumar, Padam
    Mittal, Ankush
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012, 13 (04) : 1738 - 1752
  • [10] Hassanpour H, 2011, J SIGNAL INF PROCESS, V2, P72, DOI DOI 10.4236/JSIP.2011.22010)