PARETO EQUILIBRIA FOR BIMATRIX GAMES

被引:4
作者
BORM, PEM
JANSEN, MJM
POTTERS, JAM
TIJS, SH
机构
[1] CATHOLIC UNIV NIJMEGEN,NICI,DEPT MATH,6525 ED NIJMEGEN,NETHERLANDS
[2] OPEN UNIV,6401 DL HEERLEN,NETHERLANDS
关键词
D O I
10.1016/0898-1221(93)90277-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is shown that the structure of the set of Pareto equilibria for a bimatrix game resembles the structure of the set of (perfect) Nash equilibria. Maximal Pareto subsets are introduced to take over the role of maximal Nash subsets. It is found that the set of Pareto equilibria is the finite union of maximal Pareto subsets. By extending the dimension relation for maximal Nash subsets to faces of such sets, a dimension relation for maximal Pareto subsets is derived. Finally, some remarks are made on the structure of the sets of proper and persistent equilibria.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 1978, INT J GAME THEORY
[2]  
BOHNENBLUST HF, 1950, ANN MATH STUD, V24, P51
[3]  
BORM PEM, 1993, IN PRESS OR SPEKTRUM, V15
[4]  
GALE D, 1950, ANN MATH STUD, V24, P37
[5]   NASH SUBSETS AND MOBILITY CHAINS IN BIMATRIX GAMES [J].
HEUER, GA ;
MILLHAM, CB .
NAVAL RESEARCH LOGISTICS, 1976, 23 (02) :311-319
[6]   MAXIMAL NASH SUBSETS FOR BIMATRIX GAMES [J].
JANSEN, MJM .
NAVAL RESEARCH LOGISTICS, 1981, 28 (01) :147-152
[7]  
JANSEN MJM, 1993, IN PRESS GAMES EC BE
[8]  
JANSEN MJM, 9207 U NIJM DEP MATH
[9]  
JURG AP, 1989, METHODS OPER RES, V63, P277
[10]  
Kalai E., 1984, International Journal of Game Theory, V13, P129, DOI 10.1007/BF01769811