NONSEPARABILITY OF THE QUOTIENT SPACE CABV(SIGMA,M, X)/L1(M, X) FOR BANACH-SPACES X WITHOUT THE RADON-NIKODYM PROPERTY

被引:0
作者
DREWNOWSKI, L
机构
关键词
BANACH SPACE; SPACES OF VECTOR MEASURES; BOCHNER INTEGRABLE FUNCTIONS; RADON-NIKODYM PROPERTY; NONSEPARABLE QUOTIENT SPACE;
D O I
10.4064/sm-104-2-125-132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that if (S, SIGMA, m) is an atomless finite measure space and X is a Banach space without the Radon-Nikodym property, then the quotient space cabv(SIGMA, m; X)/L1(m; X) is nonseparable.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 8 条
[1]   DUNFORD-PETTIS OPERATORS ON L1 AND THE RADON-NIKODYM PROPERTY [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 37 (1-2) :34-47
[2]  
DIESTEL J, 1977, MATH SURVEYS, V15
[3]  
DREWNOWSKI L, 1993, STUD MATH, V104, P111
[4]  
DREWNOWSKI L, 1990, ANOTHER NOTE COPIES
[5]   SOME EFFECTS OF SET THEORETICAL ASSUMPTIONS IN MEASURE THEORY [J].
MAULDIN, RD .
ADVANCES IN MATHEMATICS, 1978, 27 (01) :45-62
[6]  
MICHALAK A, UNPUB
[7]  
[No title captured]
[8]  
[No title captured]