SIMULATION ANALYSIS OF THE STABILITY MUTANT R96H OF T4 LYSOZYME

被引:169
作者
TIDOR, B [1 ]
KARPLUS, M [1 ]
机构
[1] HARVARD UNIV,DEPT CHEM,CAMBRIDGE,MA 02138
关键词
D O I
10.1021/bi00227a009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Free energy simulation methods are used to analyze the effects of the mutation Arg 96 --> His on the stability of T4 lysozyme. The calculated stability change and the lack of significant structural rearrangement in the folded state due to the mutation are in agreement with experimental studies [Kitamura, S., & Sturtevant, J. M. (1989) Biochemistry 28, 3788-3792; Weaver, L. H., et al. (1989) Biochemistry 28, 3793-3797]. By use of thermodynamic integration, the contributions of specific interactions to the free energy change are evaluated. It is shown that a number of contributions that stabilize the wild type or the mutant partially cancel in the overall free energy difference; some of these involve the unfolded state. Comparison of the results with conclusions based on structural and thermodynamic data leads to new insights into the origin of the stability difference between wild-type and mutant proteins. Of particular interest is the importance of the contributions of more distant residues, solvent water, and the covalent linkage of the mutated amino acid. Also, the analysis of the interactions of Arg/His 96 with the C-terminal end of a helix (residues 82-90) makes it clear that the nearby carbonyl groups (Tyr 88 and Asp 89) make the dominant contribution, that the amide groups do not contribute significantly, and that the helix-dipole model is inappropriate for this case.
引用
收藏
页码:3217 / 3228
页数:12
相关论文
共 64 条
  • [1] ALBER T, 1989, ANNU REV BIOCHEM, V58, P765, DOI 10.1146/annurev.biochem.58.1.765
  • [2] CONTRIBUTIONS OF HYDROGEN-BONDS OF THR-157 TO THE THERMODYNAMIC STABILITY OF PHAGE-T4 LYSOZYME
    ALBER, T
    SUN, DP
    WILSON, K
    WOZNIAK, JA
    COOK, SP
    MATTHEWS, BW
    [J]. NATURE, 1987, 330 (6143) : 41 - 46
  • [3] TEMPERATURE-SENSITIVE MUTATIONS OF BACTERIOPHAGE-T4 LYSOZYME OCCUR AT SITES WITH LOW MOBILITY AND LOW SOLVENT ACCESSIBILITY IN THE FOLDED PROTEIN
    ALBER, T
    SUN, DP
    NYE, JA
    MUCHMORE, DC
    MATTHEWS, BW
    [J]. BIOCHEMISTRY, 1987, 26 (13) : 3754 - 3758
  • [4] FREE-ENERGY CALCULATIONS BY COMPUTER-SIMULATION
    BASH, PA
    SINGH, UC
    LANGRIDGE, R
    KOLLMAN, PA
    [J]. SCIENCE, 1987, 236 (4801) : 564 - 568
  • [5] CALCULATION OF THE RELATIVE CHANGE IN BINDING FREE-ENERGY OF A PROTEIN-INHIBITOR COMPLEX
    BASH, PA
    SINGH, UC
    BROWN, FK
    LANGRIDGE, R
    KOLLMAN, PA
    [J]. SCIENCE, 1987, 235 (4788) : 574 - 576
  • [6] PROTEIN STABILITY CURVES
    BECKTEL, WJ
    SCHELLMAN, JA
    [J]. BIOPOLYMERS, 1987, 26 (11) : 1859 - 1877
  • [7] THERMAL-DENATURATION OF BACTERIOPHAGE-T4 LYSOZYME AT NEUTRAL PH
    BECKTEL, WJ
    BAASE, WA
    [J]. BIOPOLYMERS, 1987, 26 (05) : 619 - 623
  • [8] BEVERIDGE DL, 1989, ANNU REV BIOPHYS BIO, V18, P431, DOI 10.1146/annurev.biophys.18.1.431
  • [9] HARMONIC DYNAMICS OF PROTEINS - NORMAL-MODES AND FLUCTUATIONS IN BOVINE PANCREATIC TRYPSIN-INHIBITOR
    BROOKS, B
    KARPLUS, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (21): : 6571 - 6575
  • [10] CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS
    BROOKS, BR
    BRUCCOLERI, RE
    OLAFSON, BD
    STATES, DJ
    SWAMINATHAN, S
    KARPLUS, M
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) : 187 - 217