On an Opial type inequality due to Fink

被引:8
|
作者
Pang, PYH
Agarwal, RP
机构
[1] Department of Mathematics, National University of Singapore, Singapore, 0511, Kent Ridge
关键词
D O I
10.1006/jmaa.1995.1438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize Fink's extension of Opial's inequality. We also offer a simplified proof of Fink's original result. (C) 1995 Academic Press, Inc.
引用
收藏
页码:748 / 753
页数:6
相关论文
共 50 条
  • [1] General Opial type inequality
    Barbir, Ana
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    AEQUATIONES MATHEMATICAE, 2015, 89 (03) : 641 - 655
  • [2] General Opial type inequality
    Ana Barbir
    Kristina Krulić Himmelreich
    Josip Pečarić
    Aequationes mathematicae, 2015, 89 : 641 - 655
  • [3] ON AN INEQUALITY OF OPIAL TYPE IN 2 VARIABLES
    PACHPATTE, BG
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1992, 23 (09) : 657 - 661
  • [4] Opial-type inequality due to Agarwal-Pang and fractional differential inequalities
    Andric, Maja
    Barbir, Ana
    Farid, Ghulam
    Pecaric, Josip
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (04) : 324 - 335
  • [5] ON AN INEQUALITY OF OPIAL
    KENG, HL
    SCIENTIA SINICA, 1965, 14 (05): : 789 - &
  • [6] On Shafer-Fink-type inequality
    Zhu, Ling
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [7] On Shafer-Fink-Type Inequality
    Ling Zhu
    Journal of Inequalities and Applications, 2007
  • [8] An Opial-Type Inequality on Time Scales
    Li, Qiao-Luan
    Cheung, Wing-Sum
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [9] NOTE ON A DISCRETE OPIAL-TYPE INEQUALITY
    ALZER, H
    ARCHIV DER MATHEMATIK, 1995, 65 (03) : 267 - 270
  • [10] General Opial Type Inequality and New Green Functions
    Gudelj, Ana
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    AXIOMS, 2022, 11 (06)