STABLE PARABOLIC BUNDLES AND FLAT SINGULAR CONNECTIONS

被引:57
作者
BIQUARD, O [1 ]
机构
[1] ECOLE POLYTECH, CTR MATH, F-91128 PALAISEAU, FRANCE
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 1991年 / 119卷 / 02期
关键词
D O I
10.24033/bsmf.2166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Riemann surface, E --> X a holomorphic vector bundle with parabolic structure over the points P(i) is-an-element-of X; we construct spaces of connections on E, singular at the points P(i), which "represent" the parabolic structure; we then use Donaldson's method to give a differential-geometric proof of a theorem of Mehta and Seshadri about stable parabolic vector bundles.
引用
收藏
页码:231 / 257
页数:27
相关论文
共 13 条
[1]  
[Anonymous], 1990, J AM MATH SOC, DOI [DOI 10.2307/1990935, 10.1090/S0894-0347-1990-1040197-8]
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]   INFINITE DETERMINANTS, STABLE BUNDLES AND CURVATURE [J].
DONALDSON, SK .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :231-247
[4]  
DONALDSON SK, 1983, J DIFFER GEOM, V18, P279
[5]  
DONALDSON SK, 1985, P LOND MATH SOC, V50, P1
[6]  
HITCHIN NJ, 1987, P LOND MATH SOC, V55, P59
[7]  
Lockhart R. B., 1985, ANN SCUOLA NORM SU 4, V12, P409
[8]   MODULI OF VECTOR-BUNDLES ON CURVES WITH PARABOLIC STRUCTURES [J].
MEHTA, VB ;
SESHADRI, CS .
MATHEMATISCHE ANNALEN, 1980, 248 (03) :205-239
[9]   STABLE AND UNITARY VECTOR BUNDLES ON A COMPACT RIEMANN SURFACE [J].
NARASIMHAN, MS ;
SESHADRI, CS .
ANNALS OF MATHEMATICS, 1965, 82 (03) :540-+
[10]  
SESHADRI CS, 1982, ASTERISQUE, P3