HERMITE-FEJER TYPE INTERPOLATION AND KOROVKINS THEOREM

被引:2
作者
KNOOP, HB
LOCHER, F
机构
[1] UNIV DUISBURG GESAMTHSCH,FACHBEREICH MATH,W-4100 DUISBURG,GERMANY
[2] FERNUNIVGESAMTHSCH HAGEN,FACHBEREICH MATH & INFORMAT,W-5800 HAGEN,GERMANY
关键词
D O I
10.1017/S0004972700028549
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we consider Hermite-Fejer interpolation at the zeros of Jacobi polynomials and with additional boundary conditions. For the associated Hermite-Fejer type operators F(mr)(a+r,beta) and special values of alpha,beta it was proved by the first author in recent papers that one has uniform convergence on the whole interval [-1,1]. The second author could show by introducing the concept of asymptotic positivity how to get the known convergence results for the classical Hermite-Fejer interpolation operators. In the present paper we show, using a slightly modified Bohman-Korovkin theorem for asymptotically positive functionals, that the Hermite-Fejer type interpolation polynomials F(mr)(a+r,beta) f, f-epsilon C([-1,1]), converge pointwise to f for arbitrary alpha,beta > -1. The convergence is uniform on [-1 + delta,1 - delta].
引用
收藏
页码:383 / 390
页数:8
相关论文
共 7 条
[1]  
GONSKA HH, 1989, UNPUB STUDIA SCI MAT, V24
[2]  
KNOOP HB, 1985, MULTIVARIATE APPROXI, V3, P253
[3]  
KNOOP HB, 1981, THESIS U DUISBURG
[4]   ON HERMITE-FEJER INTERPOLATION AT JACOBI ZEROS [J].
LOCHER, F .
JOURNAL OF APPROXIMATION THEORY, 1985, 44 (02) :154-166
[5]  
LOCHER F, 1985, MULTIVARIATE APPROXI, V3, P277
[6]  
Szego G., 1975, AM MATH SOC C PUBL, V23
[7]  
VERTESI P, 1982, ACTA MATH ACAD SCI H, V39, P83, DOI 10.1007/BF01895218