Classes of Commuting Matrices

被引:0
|
作者
Rosa, Cecilia
Pereira, Edgar [1 ]
da Cruz, Henrique F.
机构
[1] Inst Politecn Guarda, Dept Matemat, Guarda, Portugal
关键词
Commuting matrices; Matrix equations; Upper triangular Toeplitz matrices;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sets of square matrices of order n having special forms are defined as n(k)-classes. Conditions for these n(k)-classes to be commutative rings are stated. Someexamples illustrate the presented theory.
引用
收藏
页码:969 / 984
页数:16
相关论文
共 50 条
  • [41] The joint numerical range of commuting matrices
    Lau, Pan-Shun
    Li, Chi-Kwong
    Poon, Yiu-Tung
    STUDIA MATHEMATICA, 2022, : 241 - 259
  • [42] On commuting varieties of upper triangular matrices
    Basili, Roberta
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1533 - 1541
  • [43] ALMOST COMMUTING MATRICES, COHOMOLOGY, AND DIMENSION
    Enders, Dominic
    Shulman, Tatiana
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (06): : 1653 - 1683
  • [44] SCHMIDT CONJECTURE ON NORMALITY FOR COMMUTING MATRICES
    BROWN, G
    MORAN, W
    INVENTIONES MATHEMATICAE, 1993, 111 (03) : 449 - 463
  • [45] Perturbation Bounds for Eigenvalues of Commuting Matrices
    Wu, Guoxing
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 312 - 314
  • [46] Common invariant subspace and commuting matrices
    Bourgeois, Gerald
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) : 3030 - 3038
  • [47] On condensed forms for partially commuting matrices
    Alpin, YA
    Elsner, L
    Ikramov, KD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 306 (1-3) : 165 - 182
  • [48] On the irreducibility of commuting varieties of nilpotent matrices
    Basili, R
    JOURNAL OF ALGEBRA, 2003, 268 (01) : 58 - 80
  • [49] On the variety of almost commuting nilpotent matrices
    Eliana Zoque
    Transformation Groups, 2010, 15 : 483 - 501
  • [50] Commuting family of block Jacobi matrices
    Univ of Oregon, Eugene, United States
    Comput Math Appl, 1-2 (211-222):