Similarity-Based Fuzzy Classification of ECG and Capnogram Signals

被引:6
作者
Pomares Betancourt, Janet [1 ,2 ]
Fatichah, Chastine [1 ]
Leonard Tangel, Martin [1 ]
Yan, Fei [1 ]
Sanchez, Jesus Adrian Garcia [1 ]
Dong, Fang-Yan [1 ]
Hirota, Kaoru [1 ]
机构
[1] Tokyo Inst Technol, Midori Ku, G3-49,4259 Nagatsuta, Yokohama, Kanagawa 2268502, Japan
[2] Cent Inst Digital Res, Havana, Cuba
关键词
classification; similarity; fuzzy inference; ECG; capnogram;
D O I
10.20965/jaciii.2013.p0302
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method for ECG and capnogram signals classification is proposed based on fuzzy similarity evaluation, where shape exchange algorithm and fuzzy inference are combined. It aims to be applied to quasi-periodic biomedical signals and has low computational cost. On the experiments for atrial fibrillation (AF) classification using two databases: MIT-BIH AF and MIT-BIH Normal Sinus Rhythm, values of 100%, 94.4%, and 97.6% for sensitivity, specificity, and accuracy respectively, and execution time of 0.6 s are obtained. The proposal is capable of been extended to classify different diseases, from ECG and capnogram signals, such as: Brugada syndrome, AV block, hypoventilation, and asthma among others to be implemented in low computational resources devices.
引用
收藏
页码:302 / 310
页数:9
相关论文
共 17 条
[1]   Matching of quasi-periodic time series patterns by exchange of block-sorting signatures [J].
Boucheham, Bachir .
PATTERN RECOGNITION LETTERS, 2008, 29 (04) :501-514
[2]  
Couceiro R., 2008, P INT C PATT REC ICP, V19, P1, DOI [DOI 10.1109/ICPR.2008.4761755, 10.1109/ICPR.2008.4761755]
[3]   Automatic Real Time Detection of Atrial Fibrillation [J].
Dash, S. ;
Chon, K. H. ;
Lu, S. ;
Raeder, E. A. .
ANNALS OF BIOMEDICAL ENGINEERING, 2009, 37 (09) :1701-1709
[4]   A comparison of the ECG classification performance of different feature sets [J].
de Chazal, P ;
Reilly, RB .
COMPUTERS IN CARDIOLOGY 2000, VOL 27, 2000, 27 :327-330
[5]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[6]   Correlations between capnographic waveforms and peak flow meter measurement in emergency department management of asthma [J].
Nik Hisamuddin N.A.R. ;
Rashidi A. ;
Chew K.S. ;
Kamaruddin J. ;
Idzwan Z. ;
Teo A.H. .
International Journal of Emergency Medicine, 2009, 2 (2) :83-89
[7]   THE USE OF END-TIDAL CAPNOGRAPHY TO MONITOR NON-INTUBATED PATIENTS PRESENTING WITH ACUTE EXACERBATION OF ASTHMA IN THE EMERGENCY DEPARTMENT [J].
Howe, Teo Aik ;
Jaalam, Kamaruddin ;
Ahmad, Rashidi ;
Sheng, Chew Keng ;
Ab Rahman, Nik Hisamuddin Nik .
JOURNAL OF EMERGENCY MEDICINE, 2011, 41 (06) :581-589
[8]   Atrial fibrillation classification with artificial neural networks [J].
Kara, Sadik ;
Okandan, Mustafa .
PATTERN RECOGNITION, 2007, 40 (11) :2967-2973
[9]  
Kazemi M., 2011, J TISSUE SCI ENG, V2, DOI [10.4172/2157-7552.1000111, DOI 10.4172/2157-7552.1000111]
[10]   Feature Extraction Of Capnogram For Asthmatic Patient [J].
Kean, Tan Teik ;
Teo, A. H. ;
Malarvili, M. B. .
2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: ICCEA 2010, PROCEEDINGS, VOL 2, 2010, :251-255