Lyra: password-based key derivation with tunable memory and processing costs

被引:11
作者
Almeida, Leonardo C. [1 ]
Andrade, Ewerton R. [1 ]
Barreto, Paulo S. L. M. [1 ]
Simplicio, Marcos A., Jr. [1 ]
机构
[1] Univ Sao Paulo Poli USP, Escola Politecn, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Password-based key derivation; Memory usage; Cryptographic sponges;
D O I
10.1007/s13389-013-0063-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present Lyra, a password-based key derivation scheme based on cryptographic sponges. Lyra was designed to be strictly sequential (i.e., not easily parallelizable), providing strong security even against attackers that use multiple processing cores (e.g., custom hardware or a powerful GPU). At the same time, it is very simple to implement in software and allows legitimate users to fine-tune its memory and processing costs according to the desired level of security against brute force password guessing. We compare Lyra with similar-purpose state-of-the-art solutions, showing how our proposal provides a higher security level and overcomes limitations of existing schemes. Specifically, we show that if we fix Lyra's total processing time t in a legitimate platform, the cost of a memory-free attack against the algorithm is exponential, while the best-known result in the literature (namely, against the scrypt algorithm) is quadratic. In addition, for an identical same processing time, Lyra allows for a higher memory usage than its counterparts, further increasing the cost of brute force attacks.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 47 条
  • [1] Andreeva E., 2011, IACR CRYPTOL EPRINT, V2011, P28
  • [2] [Anonymous], 2009, BSDCAN 2009
  • [3] [Anonymous], 2012, APL IOS SEC
  • [4] [Anonymous], 2012, TRUECRYPT FREE OP SO
  • [5] [Anonymous], 2012, TESL KEPL FAM PROD O
  • [6] [Anonymous], 2002, FIPS PUB
  • [7] [Anonymous], 2012, NVIDIA CUDA C PROGR
  • [8] [Anonymous], 2013, PASSW HASH COMP
  • [9] [Anonymous], 2013, DRAM CONTR PRIC
  • [10] [Anonymous], 2009, NIST SPEC PUBL