STATISTICAL PROPERTIES OF RESONANCES IN 2-DIMENSIONAL QUANTUM-MECHANICAL POINT SCATTERING

被引:1
作者
GAWLISTA, R
SEBA, P
机构
[1] Institut für Mathematik, Ruhr-Universität Bochum, W-463 Bochum 1
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 09期
关键词
D O I
10.1103/PhysRevA.46.6056
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Based on the close relations between statistical properties of quantum dissipative systems and scattering systems, we conjecture that for quantum chaotic scattering the distribution of the resonance poles of the S matrix is generic and follows the predictions of Ginibre's ensemble of random (non-Hermitian) matrices. This will be demonstrated on a simple example of a single particle being scattered by (a fixed number of) point obstacles distributed randomly in two dimensions.
引用
收藏
页码:6056 / 6058
页数:3
相关论文
共 10 条
[1]  
ALBEVERIO S, 1988, SOLVABLLE MODELS QUA
[2]  
DAVIES EB, 1978, ANN I H POINCARE A, V29, P395
[3]   ON THE OPTICAL APPROXIMATION IN 2-CHANNEL SYSTEMS [J].
EXNER, P ;
ULEHLA, I .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) :1542-1547
[4]   UNIVERSALITY OF CUBIC-LEVEL REPULSION FOR DISSIPATIVE QUANTUM CHAOS [J].
GROBE, R ;
HAAKE, F .
PHYSICAL REVIEW LETTERS, 1989, 62 (25) :2893-2896
[5]  
Haake F., 2018, QUANTUM SIGNATURES C, V54, DOI DOI 10.1007/978-3-642-05428-0
[6]   LIVSIC MATRIX IN PERTURBATION-THEORY [J].
HOWLAND, JS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 50 (02) :415-437
[7]   STATISTICAL PROPERTIES OF RESONANCES IN QUANTUM IRREGULAR SCATTERING [J].
JOHN, W ;
MILEK, B ;
SCHANZ, H ;
SEBA, P .
PHYSICAL REVIEW LETTERS, 1991, 67 (15) :1949-1952
[8]  
LIVSHITS MS, 1957, SOV PHYS JETP-USSR, V4, P91
[9]  
Livsic M. S., 1973, OPERATORS OSCILLATIO, V34
[10]  
MEHTRA ML, 1967, RANDOM MATRIX THEORY