DOMAIN DECOMPOSITION INTERFACE PRECONDITIONERS FOR 4TH-ORDER ELLIPTIC PROBLEMS

被引:8
作者
CHAN, TF
WEINAN, E
SUN, JC
机构
[1] NYU,COURANT INST,NEW YORK,NY 10003
[2] CHINESE ACAD SCI,CTR COMP,BEIJING,PEOPLES R CHINA
基金
中国国家自然科学基金;
关键词
DOMAIN DECOMPOSITION; BIHARMONIC EQUATION; SCHUR COMPLEMENT; INTERFACE PRECONDITIONER;
D O I
10.1016/0168-9274(91)90072-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present preconditioners for the interface system arising from solving fourth-order elliptic equations with domain decomposition methods. These preconditioners are derived from a Fourier analysis of the interface operator. We show that the condition number of the interface Schur complement is of order O(h-3), where h is the grid size. Precise estimates concerning the decay properties of the elements of the Schur complement are also obtained. Relationships between interface preconditioners for second-order problems and fourth-order problems are established. Analytical as well as numerical results are given to assess the performance of these preconditioners.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 16 条
[1]  
BIRKHOFF G, 1984, NUMERICAL SOLUITON E
[2]   FAST NUMERICAL-SOLUTION OF THE BIHARMONIC DIRICHLET PROBLEM ON RECTANGLES [J].
BJORSTAD, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :59-71
[3]   ITERATIVE METHODS FOR THE SOLUTION OF ELLIPTIC PROBLEMS ON REGIONS PARTITIONED INTO SUBSTRUCTURES [J].
BJORSTAD, PE ;
WIDLUND, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (06) :1097-1120
[4]  
BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3
[5]  
Chan T. F., 1989, DOMAIN DECOMPOSITION
[6]   ANALYSIS OF PRECONDITIONERS FOR DOMAIN DECOMPOSITION [J].
CHAN, TF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (02) :382-390
[7]  
CHAN TF, 1989, DOMAIN DECOMPOSITION, P160
[8]   A CAPACITANCE MATRIX-METHOD FOR DIRICHLET PROBLEM ON POLYGON REGION [J].
DRYJA, M .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :51-64
[9]  
Glowinski R., 1988, 1 INT S DOMAIN DECOM
[10]  
GOLUB GH, 1983, 6TH P INT C COMP ME