TRANSPORT IN HAMILTONIAN-SYSTEMS

被引:728
作者
MACKAY, RS [1 ]
MEISS, JD [1 ]
PERCIVAL, IC [1 ]
机构
[1] UNIV LONDON QUEEN MARY COLL,DEPT APPL MATH,LONDON E1 4NS,ENGLAND
来源
PHYSICA D | 1984年 / 13卷 / 1-2期
关键词
D O I
10.1016/0167-2789(84)90270-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:55 / 81
页数:27
相关论文
共 36 条
[1]  
[Anonymous], COMMUNICATION, P189
[2]  
[Anonymous], 1967, ADV CHEM PHYS, DOI 10.1002/9780470140154.ch5
[3]  
[Anonymous], 1915, ANN PHYS-PARIS
[4]  
Aubry S., 1978, Solitons and Condensed Matter Physics, P264
[5]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[6]   LIMITS OF STABILITY FOR AN AREA-PRESERVING POLYNOMIAL MAPPING [J].
BARTLETT, JH .
CELESTIAL MECHANICS, 1982, 28 (03) :295-317
[7]   EXTENDED CHAOS AND DISAPPEARANCE OF KAM TRAJECTORIES [J].
BENSIMON, D ;
KADANOFF, LP .
PHYSICA D, 1984, 13 (1-2) :82-89
[8]   Dynamical systems with two degrees of freedom [J].
Birkhoff, George D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1917, 18 (1-4) :199-300
[9]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[10]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284