S-INTEGER POINTS ON ELLIPTIC-CURVES

被引:15
作者
GROSS, R [1 ]
SILVERMAN, J [1 ]
机构
[1] BROWN UNIV,PROVIDENCE,RI 02912
关键词
D O I
10.2140/pjm.1995.167.263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a quantitative bound for the number of S-integral points on an elliptic curve over a number field K in terms of the number of primes dividing the denominator of the j-invariant, the degree [K : Q], and the number of primes in S.
引用
收藏
页码:263 / 288
页数:26
相关论文
共 13 条
[1]  
Blanksby P.E., Montgomery H.L., Algebraic integers near the unit circle, Acta Arith., 18, pp. 355-369, (1971)
[2]  
Gross R., A Note on Roth’s Theorem, J. Number Theory, 36, pp. 127-132, (1990)
[3]  
Hindry M., Silverman J., The canonical height and integral points on elliptic curves, Invent, math., 93, pp. 419-450, (1988)
[4]  
Lang S., Elliptic Curves: Diophantine Analysis, (1978)
[5]  
Mazur B., Modular curves and the Eisenstein ideal, IHES Publ. Math., 47, pp. 33-186, (1976)
[6]  
Silverman J., Integer points and the rank of Thue elliptic curves, Inv. Math., 66, pp. 395-404, (1982)
[7]  
Silverman J., Lower bound for the canonical height on elliptic curves, Duke Math. J., 48, pp. 633-648, (1982)
[8]  
Silverman J., Representations of integers by binary forms and the rank of the Mordell-Weil group, Inv. Math., 74, pp. 281-292, (1983)
[9]  
Silverman J., An inequality relating the regulator and discriminant of a number field, J. Number Theory, 19, pp. 437-442, (1984)
[10]  
Silverman J., The Arithmetic of Elliptic Curves, Graduate texts in Mathematics, 106, (1986)