Simulation of global ocean acidification and chemical habitats of shallow- and cold-water coral reefs

被引:21
作者
Zheng Mei-Di [1 ]
Cao Long [1 ]
机构
[1] Zhejiang Univ, Dept Earth Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Simulation research; Aragonite saturation state; Ocean acidification; Shallow-water coral reefs; Cold-water coral reefs;
D O I
10.1016/j.accre.2015.05.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Using the UVic Earth System Model, this study simulated the change of seawater chemistry and analyzed the chemical habitat surrounding shallow- and cold-water coral reefs from the year 1800 to 2300 employing RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios. The model results showed that the global ocean will continue to absorb atmospheric CO2. Global mean surface ocean temperature will rise 1.1-2.8 K at the end of the 21st century across RCP scenarios. Meanwhile, the global mean surface ocean pH will drop 0.14-0.42 and the ocean surface mean concentration of carbonate will decrease 20%-51% across the RCP scenarios. The saturated state of sea water with respect to calcite carbonate minerals (Omega) will decrease rapidly. During the pre-industrial period, 99% of the shallow-water coral reefs were surrounded by seawater with Omega > 3.5 and 87% of the deep-sea coral reefs were surrounded by seawater with aragonite supersaturation. Within the 21st century, except for the high mitigation scenario of RCP2.6, almost none shallow-water coral reefs will be surrounded by seawater with Omega > 3.5. Under the intensive emission scenario of RCP8.5, by the year 2100, the aragonite saturation horizon will rise to 308 m under the sea surface from 1138 m at the preindustrial period, thus 73% of the cold-water coral reefs will be surrounded by seawater with aragonite undersaturation. By the year 2300, only 5% of the cold-water coral reefs will be surrounded by seawater with aragonite supersaturation.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 38 条
[1]   Partial offsets in ocean acidification from changing coral reef biogeochemistry [J].
Andersson, Andreas J. ;
Yeakel, Kiley L. ;
Bates, Nicholas R. ;
de Putron, Samantha J. .
NATURE CLIMATE CHANGE, 2014, 4 (01) :56-61
[2]   Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean [J].
Caldeira, K ;
Wickett, ME .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2005, 110 (C9) :1-12
[3]   The role of ocean transport in the uptake of anthropogenic CO2 [J].
Cao, L. ;
Eby, M. ;
Ridgwell, A. ;
Caldeira, K. ;
Archer, D. ;
Ishida, A. ;
Joos, F. ;
Matsumoto, K. ;
Mikolajewicz, U. ;
Mouchet, A. ;
Orr, J. C. ;
Plattner, G. -K. ;
Schlitzer, R. ;
Tokos, K. ;
Totterdell, I. ;
Tschumi, T. ;
Yamanaka, Y. ;
Yool, A. .
BIOGEOSCIENCES, 2009, 6 (03) :375-390
[4]  
Cao L., 2014, ENVIRON RES LETT, V9, P239
[5]   Sensitivity of ocean acidification and oxygen to the uncertainty in climate change [J].
Cao, Long ;
Wang, Shuangjing ;
Zheng, Meidi ;
Zhang, Han .
ENVIRONMENTAL RESEARCH LETTERS, 2014, 9 (06)
[6]   Atmospheric CO2 stabilization and ocean acidification [J].
Cao, Long ;
Caldeira, Ken .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (19)
[7]   Yes - Coral calcification rates have decreased in the last twenty-five years! [J].
De'ath, Glenn ;
Fabricius, Katharina ;
Lough, Janice .
MARINE GEOLOGY, 2013, 346 :400-402
[8]   Ocean Acidification: The Other CO2 Problem [J].
Doney, Scott C. ;
Fabry, Victoria J. ;
Feely, Richard A. ;
Kleypas, Joan A. .
ANNUAL REVIEW OF MARINE SCIENCE, 2009, 1 :169-192
[9]   Impacts of ocean acidification on marine fauna and ecosystem processes [J].
Fabry, Victoria J. ;
Seibel, Brad A. ;
Feely, Richard A. ;
Orr, James C. .
ICES JOURNAL OF MARINE SCIENCE, 2008, 65 (03) :414-432
[10]   WINTER SUMMER VARIATIONS OF CALCITE AND ARAGONITE SATURATION IN THE NORTHEAST PACIFIC [J].
FEELY, RA ;
BYRNE, RH ;
ACKER, JG ;
BETZER, PR ;
CHEN, CTA ;
GENDRON, JF ;
LAMB, MF .
MARINE CHEMISTRY, 1988, 25 (03) :227-241