WEIGHTING QUERY TERMS USING WORDNET ONTOLOGY

被引:0
作者
Sakre, Mohammed M. [1 ]
Kouta, Mohammed M. [2 ]
Allam, Ali M. N. [2 ]
机构
[1] Al Shorouk Acad, High Inst Comp & Informat Syst, Cairo, Egypt
[2] Arab Acad Sci Technol & Maritime Transport, Coll Comp & Informat Technol, Alexandria, Egypt
来源
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY | 2009年 / 9卷 / 04期
关键词
Information retrieval; WordNet; ontology; conceptual weighting; term specificity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Term-weighting techniques are responsible for giving a weight for each query term to determine its significance. This term significance is based on the generality or specificity of that term. Traditional weighting models, such as the Inverse Document Frequency (IDF), measure the generality/specificity of terms through document collection statistics. This paper presents a technique that employs the WordNet ontology to determine the significance of query terms without depending on document collection statistics. The experiments are carried out on the WT2g document collection under the Terrier Information Retrieval Platform.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 50 条
  • [41] Semantic query for Quranic ontology
    Beirade, Faiza
    Azzoune, Hamid
    Zegour, D. Eddine
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2021, 33 (06) : 753 - 760
  • [42] Query reformulation system based on WordNet and word vectors clusters
    Jumde A.
    Keskar R.
    [J]. Journal of Intelligent and Fuzzy Systems, 2024, 46 (04) : 9119 - 9137
  • [43] Using web search logs to identify query classification terms
    Taksa, Isak
    Zelikovitz, Sarah
    Spink, Amanda
    [J]. INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2007, 3 (04) : 315 - +
  • [44] A Pilot Study for Enriching the Romanian WordNet with Medical Terms
    Mitrofan, Maria
    Mititelu, Verginica Barbu
    Mitrofan, Grigorina
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE COMPUTATIONAL LINGUISTICS IN BULGARIA (CLIB '18), 2018, : 126 - 134
  • [45] Combining WordNet and ConceptNet for automatic query expansion: A learning approach
    Hsu, Ming-Hung
    Tsai, Ming-Feng
    Chen, Hsin-Hsi
    [J]. INFORMATION RETRIEVAL TECHNOLOGY, 2008, 4993 : 213 - +
  • [46] Exploitation of Query Sentences using Specific Weighting in Support-Sentence Retrieval
    Hai-Minh Nguyen
    Shirai, Kiyoaki
    [J]. 17TH INTERNATIONAL CONFERENCE IN KNOWLEDGE BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS - KES2013, 2013, 22 : 132 - 141
  • [47] Query Interface Schema Extracting from Deep Web using Ontology
    Sun, Yong
    Wang, Shang
    Li, Zhenyuan
    Liu, Chang
    Peng, Tao
    Qiu, Yuhang
    [J]. 2021 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2021, 12076
  • [48] Query Expansion Algorithm for Supreme Court Sentences Retrieval using Ontology
    Tantisripreecha, Tanapon
    Soonthornphisaj, Nuanwan
    [J]. PROCEEDINGS OF 48TH KASETSART UNIVERSITY ANNUAL CONFERENCE: SCIENCE, 2010, : 43 - 50
  • [49] Domain Ontology based Semantic Search for Efficient Information Retrieval through Automatic Query Expansion
    Chauhan, Rashmi
    Goudar, Rayan
    Sharma, Robin
    Chauhan, Atul
    [J]. 2013 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND SIGNAL PROCESSING (ISSP), 2013, : 397 - 402
  • [50] End-to-End Query Term Weighting
    Samel, Karan
    Li, Cheng
    Kong, Weize
    Chen, Tao
    Zhang, Mingyang
    Gupta, Shaleen
    Khadanga, Swaraj
    Xu, Wensong
    Wang, Xingyu
    Kolipaka, Kashyap
    Bendersky, Michael
    Najork, Marc
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4778 - 4786