INVARIANCE OF ASYMPTOTIC STABILITY OF PERTURBED LINEAR-SYSTEMS ON HILBERT-SPACE

被引:4
作者
AHMED, NU [1 ]
LI, P [1 ]
机构
[1] UNIV OTTAWA,DEPT MATH,OTTAWA K1N 6N5,ONTARIO,CANADA
关键词
INFINITE-DIMENSIONAL SYSTEMS; DISTRIBUTED CONTROL PROBLEM; STABILIZABILITY; CONTROLLABILITY; SEMIGROUPS; PERTURBATIONS; FEEDBACK CONTROL;
D O I
10.1007/BF00939936
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The questions of stabilizability of structurally perturbed or uncertain linear systems in Hilbert space of the form x = (A + P(r))x + Bu are considered. The operator A is assumed to be the infinitesimal generator of a C0-semigroup of contractions T(t), t greater-than-or-equal-to 0, in a Hilbert space X; B is a bounded linear operator from another Hilbert space U to X; and {P(r), r-epsilon-OMEGA} is a family of bounded or unbounded perturbations of A in X, where OMEGA is an arbitrary set, not necessarily carrying any topology. Sufficient conditions are presented that guarantee controllability and stabilizability of the perturbed system, given that the unperturbed system x = Ax + Bu has similar properties. In particular, it is shown that, for certain classes of perturbations, weak and strong stabilizability properties are preserved for the same state feedback operator.
引用
收藏
页码:75 / 93
页数:19
相关论文
共 20 条
[1]  
Ahmed N. U., 1981, OPTIMAL CONTROL DIST
[2]  
Ahmed N. U., 1988, ELEMENTS FINITE DIME
[3]   A NEW CLASS OF STABILIZING CONTROLLERS FOR UNCERTAIN DYNAMICAL-SYSTEMS [J].
BARMISH, BR ;
CORLESS, M ;
LEITMANN, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (02) :246-255
[4]   NOTE ON WEAK STABILIZABILITY OF CONTRACTION SEMIGROUPS [J].
BENCHIMOL, CD .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (03) :373-379
[5]  
BENCHIMOL CD, 1978, J APPL MATH OPTIM, V4, P225
[6]  
Curtain R.F., 1978, INFINITE DIMENSIONAL
[7]  
Curtain R. F., 1977, FUNCTIONAL ANAL MODE
[8]  
DAVIES EB, 1980, ONE PARAMETER SEMIGR
[9]  
Dunford N., 1958, PURE APPL MATH, V7
[10]  
Fattorini H. O., 1966, SIAM J CONT, V4, P686