On Some Lacunary Generalized Difference Sequence Spaces Defined by a Modulus Function in a Locally Convex Space

被引:0
作者
Bhardwaj, Vinod K. [1 ]
Bala, Indu [1 ]
机构
[1] Kurukshetra Univ, Dept Math, Kurukshetra 136119, Haryana, India
关键词
Difference sequence space; Lacunary sequence; Statistical convergence; Modulus function; Strong almost convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce some new lacunary generalized difference sequence spaces defined by a modulus function in a locally convex Hausdorff topological linear space whose topology is determined by a finite set Q of seminorms. Various algebraic and topological properties of these spaces, and some inclusion relations between these spaces have been discussed. We also characterize those lacunary sequences theta for which N-theta [Delta(m)(v),f, p, Q] = w(Delta(m)(v), f, p, Q). Finally, a new concept of (Delta(m)(v), Q)-lacunary statistical convergence is introduced. It is shown that if a sequence is (Delta(m)(v), Q)-lacunary strongly summable then it is (Delta(m)(v), Q)-lacunary statistically convergent and the concepts of (Delta(m)(v), Q)-lacunary strong summability and (Delta(m)(v), Q)-lacunary statistical convergence are equivalent on (Delta(m)(v), Q) -bounded sequences. Our results generalize and unify the corresponding earlier results of A.R. Freedman et al., I.J. Maddox, Y. Altin and M. Et and others.
引用
收藏
页码:665 / 683
页数:19
相关论文
共 29 条
  • [1] Altin Y., 2005, SOOCHOW J MATH, V31, P233
  • [2] Bataineh AHA, 2008, SOUTHEAST ASIAN BULL, V32, P235
  • [3] Bhardwaj VK, 2001, INDIAN J PURE AP MAT, V32, P1869
  • [4] Colak R., 2003, FILOMAT, V17, P9, DOI DOI 10.2298/FIL0317009C
  • [5] Connor J. S., 1988, ANALYSIS-UK, V8, P47, DOI DOI 10.1524/ANLY.1988.8.12.47
  • [6] Et M., 1995, SOOCHOW J MATH, V21, P377
  • [7] Et M., 2000, B MALAYS MATH SCI SO, V231, P25
  • [8] Fast H., 1951, COLLOQ MATH-WARSAW, V2, P241, DOI DOI 10.4064/CM-2-3-4-241-244
  • [9] FREEDMAN AR, 1978, P LOND MATH SOC, V37, P508
  • [10] Fridy J., 1985, ANALYSIS-UK, V5, P301, DOI DOI 10.1524/ANLY.1985.5.4.301