REPRESENTATION OF SMOOTH SURFACES BY GRAPHS - TRANSFORMATIONS OF GRAPHS WHICH DO NOT CHANGE THE EULER CHARACTERISTIC OF GRAPHS

被引:21
作者
IVASHCHENKO, AV
机构
[1] Massachusetts Institute of Technology, Department of Mathematics, Cambridge
关键词
D O I
10.1016/0012-365X(93)90297-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A molecular space is a family of closed unit cubes in Euclidean space E(n). Cube vertices have integer coordinates. Molecular spaces can be transformed from one to the other by four kinds of contractible transformations. In this paper we apply contractible transformations of molecular spaces to graphs. We prove that these transformations do not change the Euler characteristic of a graph. We describe some continuous spaces: the plane space E(n), spheres S(n), a torus and a projective plane in molecular space and graph representations.
引用
收藏
页码:219 / 233
页数:15
相关论文
共 18 条
[1]   GENERATING THE 4-CONNECTED AND STRONGLY 4-CONNECTED TRIANGULATIONS ON THE TORUS AND PROJECTIVE PLANE [J].
BARNETTE, DW .
DISCRETE MATHEMATICS, 1990, 85 (01) :1-16
[2]   ON THE SPHERICITY AND CUBICITY OF GRAPHS [J].
FISHBURN, PC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (03) :309-318
[3]  
GUTTMAN L, 1977, GEOMETRIC REPRESENTA, P713
[4]  
HALIMSKI E, 1977, UPORIADOCHENIE TOPOL
[5]  
Haray F., 1969, GRAPH THEORY
[6]  
Havel T.F., 1982, THESIS U CALIFORNIA
[7]  
IVASCHENKO AV, 1984, TOPOLOGICAL CHARACTE, P3
[8]  
IVASHCHENKO AV, VINITI642284 MOSC, P3
[9]  
IVASHCHENKO AV, INP RESS J DISCRETE
[10]  
IVASHCHENKO AV, 1988, KIBERNETIKA, V5, P120