BEST CONSTANTS FOR 2 NONCONVOLUTION INEQUALITIES

被引:136
作者
CHRIST, M [1 ]
GRAFAKOS, L [1 ]
机构
[1] WASHINGTON UNIV,DEPT MATH,ST LOUIS,MO 63130
关键词
D O I
10.2307/2160978
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The norm of the operator which averages /f/ in L(p)(R(n)) over balls of radius delta/x/ centered at either 0 or x is obtained as a function of n, p and delta. Both inequalities proved are n-dimensional analogues of a classical inequality of Hardy in R(1). Finally, a lower bound for the operator norm of the Hardy-Littlewood maximal function on L(p)(R(n)) is given.
引用
收藏
页码:1687 / 1693
页数:7
相关论文
共 8 条