BEST CONSTANTS FOR 2 NONCONVOLUTION INEQUALITIES

被引:145
作者
CHRIST, M [1 ]
GRAFAKOS, L [1 ]
机构
[1] WASHINGTON UNIV,DEPT MATH,ST LOUIS,MO 63130
关键词
D O I
10.2307/2160978
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The norm of the operator which averages /f/ in L(p)(R(n)) over balls of radius delta/x/ centered at either 0 or x is obtained as a function of n, p and delta. Both inequalities proved are n-dimensional analogues of a classical inequality of Hardy in R(1). Finally, a lower bound for the operator norm of the Hardy-Littlewood maximal function on L(p)(R(n)) is given.
引用
收藏
页码:1687 / 1693
页数:7
相关论文
共 8 条
[1]   SPHERICAL REARRANGEMENTS, SUBHARMONIC FUNCTIONS, AND ]-FUNCTIONS IN N-SPACE [J].
BAERNSTEIN, A ;
TAYLOR, BA .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (02) :245-268
[2]   WEAK LEBESGUE SPACES AND QUANTUM-MECHANICAL BINDING [J].
FARIS, WG .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (02) :365-373
[3]  
Hardy G., 1959, INEQUALITIES
[4]  
Polya G., 1951, ISOPERIMETRIC INEQUA
[5]  
Sobolev S.L., 1938, MAT SBORNIK, V5, P471
[6]  
Stein E. M., 1970, SINGULAR INTEGRAL DI
[7]  
STEIN E. M., 1971, INTRO FOURIER ANAL E
[8]   BEHAVIOR OF MAXIMAL FUNCTIONS IN RN FOR LARGE N [J].
STEIN, EM ;
STROMBERG, JO .
ARKIV FOR MATEMATIK, 1983, 21 (02) :259-269