A PROPAGATION OF CHAOS RESULT FOR BURGERS-EQUATION

被引:36
作者
SZNITMAN, AS
机构
关键词
D O I
10.1007/BF00699042
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:581 / 613
页数:33
相关论文
共 27 条
[1]  
[Anonymous], 1978, THEORIE DISTRIBUTION
[2]   SEMI-MARTINGALE INEQUALITIES VIA THE GARSIA-RODEMICH-RUMSEY LEMMA, AND APPLICATIONS TO LOCAL-TIMES [J].
BARLOW, MT ;
YOR, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (02) :198-229
[3]  
Calderoni P., 1983, ANN I H POINCARE, V39, P85
[4]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[5]  
DELLACHERIE C, 1980, PROBABILITES POTENTI, pCH5
[6]   PROPAGATION OF CHAOS AND THE BURGERS-EQUATION [J].
GUTKIN, E ;
KAC, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (04) :971-980
[7]   ON SKEW BROWNIAN-MOTION [J].
HARRISON, JM ;
SHEPP, LA .
ANNALS OF PROBABILITY, 1981, 9 (02) :309-313
[8]  
Hormander L., 1983, ANAL LINEAR PARTIAL, V2
[9]  
Ikeda N., 1981, STOCHASTIC DIFFERENT
[10]  
JACOD J, 1979, LECTURE NOTES MATH, V714