UNICITY THEOREMS FOR MEROMORPHIC OR ENTIRE-FUNCTIONS

被引:10
作者
YI, HX [1 ]
机构
[1] SHANDONG UNIV,DEPT MATH,JINAN 250100,PEOPLES R CHINA
关键词
D O I
10.1017/S0004972700016324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that there exist three finite sets S(j) (j = 1, 2, 3) such that any two non-constant meromorphic functions f and g satisfying E(f)(S(j)) = E(g) (S(j)) for j = 1, 2, 3 must be identical. As a particular case of the above result, we obtain that there exist two finite sets S(j)(j = 1, 2) such that any two non-constant entire functions f and g satisfying E(j)(S(j)) = E(g)(S(j)) for j = 1, 2 must be identical, which answers a question posed by Gross.
引用
收藏
页码:257 / 265
页数:9
相关论文
共 9 条
[2]  
GROSS F, 1977, LECTURE NOTES MATH, V599
[3]  
Gross F., 1972, FACTORIZATION MEROMO
[4]   MEROMORPHIC FUNCTIONS THAT SHARE 4 VALUES [J].
GUNDERSEN, GG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (02) :545-567
[5]  
Hayman W. K., 1964, MEROMORPHIC FUNCTION
[6]  
NEVANLINNA R, 1929, THEOREME PICARDBOREL
[7]  
Yi H. X., 1990, KODAI MATH J, V13, P363, DOI DOI 10.2996/kmj/1138039280
[8]  
Yi HX., 1990, COMPLEX VARIABLES TH, V14, P169, DOI [10.1080/17476939008814415, DOI 10.1080/17476939008814415]
[9]  
YI HX, 1990, RESULT GROSS